Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(1): 010306    DOI: 10.1088/1674-1056/25/1/010306
GENERAL Prev   Next  

Detection efficiency characteristics of free-running InGaAs/InP single photon detector using passive quenching active reset IC

Fu Zheng(郑福)1,2, Chao Wang(王超)1,3, Zhi-Bin Sun(孙志斌)1, Guang-Jie Zhai(翟光杰)1
1. Key Laboratory of Electronics and Information Technology for Space Systems, National Space Science Center, Chinese Academy of Sciences, Beijing 100190, China;
2. University of Chinese Academy of Sciences, Beijing 100049, China;
3. College of Physics, Beijing Institute of Technology, Beijing 100081, China
Abstract  InGaAs/InP avalanche photodiodes (APD) are rarely used in a free-running regime for near-infrared single photon detection. In order to overcome the detrimental afterpulsing, we demonstrate a passive quenching active reset integrated circuit. Taking advantage of the inherent fast passive quenching process and active reset to reduce reset time, the integrated circuit is useful for reducing afterpulses and is also area-efficient. We investigate the free-running single photon detector's afterpulsing effect, de-trapping time, dark count rate, and photon detection efficiency, and also compare with gated regime operation. After correction for deadtime and afterpulse, we find that the passive quenching active reset free-running single photon detector's performance is consistent with gated operation.
Keywords:  single photon detector      free-running      passive quenching      active reset  
Received:  30 June 2015      Revised:  10 September 2015      Accepted manuscript online: 
PACS:  03.67.Hk (Quantum communication)  
  85.40.-e (Microelectronics: LSI, VLSI, ULSI; integrated circuit fabrication technology)  
  42.79.Qx (Range finders, remote sensing devices; laser Doppler velocimeters, SAR, And LIDAR)  
Fund: Project supported by the National High Technology Research and Development Program of China (Grant No. 2013AA122902), the National Key Scientific Instrument and Equipment Development Project of China (Grant No. 2013YQ030595), and the National Natural Science Foundation of China (Grant Nos. 61274024 and 61474123).
Corresponding Authors:  Guang-Jie Zhai     E-mail:

Cite this article: 

Fu Zheng(郑福), Chao Wang(王超), Zhi-Bin Sun(孙志斌), Guang-Jie Zhai(翟光杰) Detection efficiency characteristics of free-running InGaAs/InP single photon detector using passive quenching active reset IC 2016 Chin. Phys. B 25 010306

[1] Comandar L C, Frohlich B, Dynes J F, Sharpe A W, Lucamarini M, Yuan Z L, Penty R V and Shields A J 2015 J. Appl. Phys. 117 083109
[2] Itzler M. A., Jiang X, Entwistle M, Slomkowski K, Tosi A, Acerbi F, Zappa F and Cova S 2011 J. Mod. Opt. 58 174
[3] Liu Y,Wu Q L, Han Z F, Dai Y M and Guo G C 2010 Chin. Phys. B 19 080308
[4] Zhang J, Thew R, Gautier J D, Gisin N and Zbinden H 2009 IEEE J. Quantum Electron. 45 792
[5] Korzh B, Walenta N, Lunghi T, Gisin N and Zbinden H 2014 Appl. Phys. Lett. 104 081108
[6] Warburton R E, Itzler M and Buller G S 2009 Appl. Phys. Lett. 94 071116
[7] Ma H Q, Yang J H, Wei K J, Li R X and Zhu W 2014 Chin. Phys. B 23 120308
[8] Cova S, Ghioni M, Lacaita A, Samori C and Zappa F 1996 Appl. Opt. 1996 35 1956
[9] Zappa F, Lotito A, Giudice A C and Cova S 2003 IEEE J. Solid-State Circuits 38 1298
[10] Rochas A, Guillaume-Gentil C, Gautier J D, Pauchard A, Ribordy G, Zbinden H, Leblebici Y and Monat L 2007 Proc. SPIE 6583 65830F
[11] Thew R T, Stucki D, Gautier J D and Zbinden H 2007 Appl. Phys. Lett. 91 201114
[12] Zheng L X,Wu J, Zhang X C, Tu J H, SunWF and Gao X J 2014 Acta Phys. Sin. 63 104216 (in Chinese)
[13] Liu M, Hu C, Campbell J C, Pan Z and Tashima M M 2008 IEEE J. Quantum Electron. 44 430
[14] Lunghi T, Barreiro C, Guinnard O, Houlmann R, Jiang X, Itzler M A and Zbinden H 2012 J. Mod. Opt. 59 1481
[15] Gallivanoni A, Rech I and GhioniM2010 IEEE Trans. Nuclear Science 57 3815
[16] Zappa F, Tosi A, Mora A D and Tisa S 2009 Sensor. Actuat. A: Phys. 153 197
[17] Itzler M, Ben-Michael R, Hsu C F, Slomkowski K, Tosi A, Cova S, Zappa F and Ispasoiu R 2007 J. Mod. Opt. 54 283
[18] Kang Y, Lu H X, Lo Y H, Bethune D S and RiskWP 2003 Appl. Phys. Lett. 83 2955
[19] Jensen K, Hopman P, Duerr E K, Dauler E A, Donnelly J P, Groves S H, Mahoney L J, McIntosh K A, Molvar K M, Napoleone A, Oakley D C, Verghese S, Vineis C J and Younger R D 2006 Appl. Phys. Lett. 88 133503
[20] Jiang X, ItzlerMA, Ben-Michael R, Slomkowski K, KrainakMA,Wu S and Sun X 2008 IEEE J. Quantum Electron. 44 3
[21] Chick S, Coath R, Sellahewa R, Turchetta R, Leitner T and Fenigstein A 2014 IEEE Trans. Electron Dev. 61 2725
[22] Zheng F, Zhu G, Liu X F, Wang C, Sun Z B and Zhai G J 2015 Optoelectron. Lett. 11 121
[1] Fast qubit initialization in a superconducting circuit
Tianqi Huang(黄天棋), Wen Zheng(郑文), Shuqing Song(宋树清), Yuqian Dong(董煜倩), Xiaopei Yang(杨晓沛), Zhikun Han(韩志坤), Dong Lan(兰栋), and Xinsheng Tan(谭新生). Chin. Phys. B, 2021, 30(7): 070310.
[2] Fe: ZnSe laser pumped by a 2.93-μm Cr, Er: YAG laser
Ying-Yi Li(李英一), Tong-Yu Dai(戴通宇), Xiao-Ming Duan(段小明), Chun-Fa Guo(郭春发), Li-Wei Xu(徐丽伟), You-Lun Ju(鞠有伦). Chin. Phys. B, 2019, 28(6): 064203.
[3] The intensity detection of single-photon detectors based on photon counting probability density statistics
Zijing Zhang(张子静), Long Wu(吴龙), Jie Song(宋杰), Yuan Zhao(赵远). Chin. Phys. B, 2017, 26(10): 104207.
[4] Statistical analysis of the temporal single-photon response of superconducting nanowire single photon detection
He Yu-Hao (何宇昊), Lü Chao-Lin (吕超林), Zhang Wei-Jun (张伟君), Zhang Lu (张露), Wu Jun-Jie (巫君杰), Chen Si-Jing (陈思井), You Li-Xing (尤立星), Wang Zhen (王镇). Chin. Phys. B, 2015, 24(6): 060303.
[5] Performance of superconducting single photon detector with nano-antenna
Zhang Chao (张弨), Jiao Rong-Zhen (焦荣珍). Chin. Phys. B, 2012, 21(12): 120306.
[6] The analysis of the integral gated mode single photon detector
Wei Zheng-Jun (魏正军), Li Kai-Zhen (李开振), Zhou Peng (周 鹏), Wang Jin-Dong (王金东), Liao Chang-Jun (廖常俊), Guo Jian-Ping (郭健平), Liang Rui-Sheng (梁瑞生), Liu Song-Hao (刘颂豪). Chin. Phys. B, 2008, 17(11): 4142-4148.
No Suggested Reading articles found!