Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(12): 120502    DOI: 10.1088/1674-1056/24/12/120502
GENERAL Prev   Next  

Composition and temperature dependences of site occupation for Al, Cr, W, and Nb in MoSi2

Li Xiao-Pinga, Sun Shun-Pinga, Yu Yuna, Wang Hong-Jina, Jiang Yongb, Yi Dan-Qingb
a School of Materials Engineering, Jiangsu University of Technology, Changzhou 213001, China;
b School of Materials Science and Engineering, and the Key Laboratory for Non-ferrous Materials of Ministry of Education, Central South University, Changsha 410083, China

The composition and temperature dependences of site occupation for Al, Cr, W, and Nb in MoSi2 are investigated by using a thermodynamics model and first principles calculations. A simple parameter measuring the substitution energy difference between Si and Mo sites reflects the nature of site occupancy. At 0 K, these elements prefer Si sites in Mo-rich and Mo sites in Si-rich, and show no site preference in stoichiometric MoSi2. At elevated temperature, the site occupation behaviors show strong dependence on both composition and temperature. Some calculated results have been certified in previous experiments.

Keywords:  molybdenum silicides      site occupancy      first principles calculations  
Received:  08 May 2015      Revised:  16 August 2015      Published:  05 December 2015
PACS:  05.70.-a (Thermodynamics) (Impurities)  
  81.05.Bx (Metals, semimetals, and alloys)  

Project supported by the National Natural Science Foundation of China (Grant No. 51401093) and the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20130233).

Corresponding Authors:  Sun Shun-Ping     E-mail:

Cite this article: 

Li Xiao-Ping, Sun Shun-Ping, Yu Yun, Wang Hong-Jin, Jiang Yong, Yi Dan-Qing Composition and temperature dependences of site occupation for Al, Cr, W, and Nb in MoSi2 2015 Chin. Phys. B 24 120502

[1] Vasudevan A K and Petrovic J J 1992 Mater. Sci. Eng. A 155 1
[2] Ito K, Yano T, Nakamoto T, Moriwaki M, Inui H and Yamaguchi M 1997 Prog. Mater. Sci. 42 193
[3] Yi D Q and Li C H 1999 Mater. Sci. Eng. A 261 89
[4] Abdollahi A and Mashhadi M 2014 Ceram. Int. 40 10767
[5] Meddar L, Magnien B, Clisson M, Roue L and Guay D 2012 J. Mater. Sci. 47 6792
[6] Petrovic J J 1995 Mater. Sci. Eng. A 192 31
[7] Sadananda K, Feng C R, Mitra R and Deev S C 1999 Mater. Sci. Eng. A 261 223
[8] Chen Z, Shan B and Chen R 2011 Appl. Phys. Lett. 98 101903
[9] Sharif A A 2012 J. Alloys Compd. 518 22
[10] Xu J, Mao X Z, Xie Z H and Munroe P 2013 J. Phys. D: Appl. Phys. 46 065304
[11] Feng P, Liu W, Farid A, Wu J, Niu J, Wang X and Qiang Y 2012 Adv. Powder Technol. 23 133
[12] Yuge K Kishida K, Inui H, Koizumi Y Hagihara K and Nakano T 2013 Intermetallics 42 165
[13] Yi D Q, Li C H, Lai Z H, Akselsen O M and Ulvensoen J H 1998 Metall. Mater. Trans. A 29 119
[14] Peng K, Yi M, Ran L and Ge Y 2011 Mater. Chem. Phys. 129 990
[15] Du W, Zhang L, Ye F, Ni X and Lin J 2010 Physica B 405 1695
[16] Hagihara K, Fushiki T and Nakano T 2014 Scr. Mater. 82 53
[17] Liu W, Feng P, Wang X, Niu J, Shen C and Liu J 2012 Mater. Chem. Phys. 132 515
[18] Yuge K, Koizumi Y, Hagihara K, Nakano T, Kishida K and Inui H 2012 Phys. Rev. B 85 134106
[19] Dasgupta T and Umarji A M 2008 Intermetallics 16 739
[20] Mitra R, Rao V R and Rao A V 1999 Intermetallics 7 213
[21] Xu J, Wu J D, Li Z, Munroe P and Xie Z H 2013 J. Alloys Compd. 565 127
[22] Bose S 1992 Mater. Sci. Eng. A 155 217
[23] Sharif A A, Misra A and Mitchell T E 2003 Mater. Sci. Eng. A 358 279
[24] Jiang Z Q,Yao G,An X Y, Fu Y J, Cao L H, Wu W D and Wang X M 2014 Chin. Phys. B 23 057104
[25] Lu Z S, He B L, Ma D W and Yang Z X 2015 Chin. Phys. B 24 026801
[26] Šob M and Friák M 2009 Intermetallics 17 523
[27] Chen J J, Duan J Z, Zhao D Q, Zhang J R, Yang Y and Duan W S 2015 Chin. Phys. B 24 088101
[28] Li X P, Sun S P, Jiang H F, Lei W N, Jiang Y and Yi D Q 2014 J. Alloys Compd. 605 45
[29] Colinet C and Tedenac J C 2010 Intermetallics 18 1444
[30] Jiang C and Gleeson B 2006 Scr. Mater. 55 433
[31] Jiang C, Sordelet D J and Gleeson B 2006 Scr. Mater. 54 405
[32] Kresse G and Furthmuller J 1996 Phys. Rev. B 54 11169
[33] Kresse G and Furthmuller J 1996 Comput. Mater. Sci. 6 15
[34] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[35] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[36] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[37] Boettinger W J, Perepezko J H and Frankwicz P S 1992 Mater. Sci. Eng. A 155 33
[38] Wagner C and Schottky W 1930 Z. Phys. Chem. B 11 163
[39] Korzhavyi P A, Ruban A V, Lozovoi A Y, Vekilov Y K, Abrikosov I A and Johansson B 2000 Phys. Rev. B 61 6003
[40] Wu Q and Li S 2012 Comput. Mater. Sci. 53 436
[41] Zhang X Deng H, Xiao S, Tang J and Deng L 2014 J. Alloys Compd. 612 361
[42] Li H, Li M, Wu Y, Zhou H, Wu X, Zhu Z, Li C, Xu L, Ji J, Hua Y, Su T, Ji C and Zhang W 2012 Intermetallics 28 156
[43] Yang H B, Li W, Shan A D and Wu J S 2005 Scr. Mater. 53 635
[44] Yanagihara K, Przybylski K and Maruyama T 1997 Oxid. Met. 47 277
[45] Hou S, Liu Z, Liu D and Li B 2012 Surf. Coat. Tech. 206 4466
[46] Majumdar S 2012 Surf. Coat. Tech. 206 3393
[47] Xu J, Liu L, Li Z, Munroe P and Xie Z 2013 Surf. Coat. Tech. 223 115
[48] Majumdar S and Sharma I G 2011 Intermetallics 19 541
[49] Kunitsugu S, Nishida N, Tomiya T, Nagae M, Nakanishi M, Fujii T and Takada J 2005 Mater. Trans. 46 215
[50] Mitra R and Rao V V R 1999 Mater. Sci. Eng. A 260 146
[51] Xu J, Wu H and Li B 2010 Int. J. Refract. Met. H. 28 217
[52] Hou D, Li K, Li H, Fu Q, Wei J and Zhang Y 2007 J. Mater. Sci. Technol. 23 559
[53] Zhang G J, Yue X M and Watanabe T 2000 J. Mater. Sci. 35 4729
[54] Pankhurst D A, Yuan Z, Nguyen-Manh D, Abel M L, Shao G, Watts J F, Pettifor D G and Tsakiropoulos P 2005 Phys. Rev. B 71 075114
[1] A high-pressure study of Cr3C2 by XRD and DFT
Lun Xiong(熊伦), Qiang Li(李强), Cheng-Fu Yang(杨成福), Qing-Shuang Xie(谢清爽), Jun-Ran Zhang(张俊然). Chin. Phys. B, 2020, 29(8): 086401.
[2] Significant role of nanoscale Bi-rich phase in optimizing thermoelectric performance of Mg3Sb2
Yang Wang(王杨), Xin Zhang(张忻), Yan-Qin Liu(刘燕琴), Jiu-Xing Zhang(张久兴), Ming Yue(岳明). Chin. Phys. B, 2020, 29(6): 067201.
[3] Theoretical calculations of structural, electronic, and elastic properties of CdSe1-xTex: A first principles study
M Shakil, Muhammad Zafar, Shabbir Ahmed, Muhammad Raza-ur-rehman Hashmi, M A Choudhary, T Iqbal. Chin. Phys. B, 2016, 25(7): 076104.
[4] Mobility enhancement of strained GaSb p-channel metal—oxide—semiconductor field-effect transistorswith biaxial compressive strain
Yan-Wen Chen(陈燕文), Zhen Tan(谭桢), Lian-Feng Zhao(赵连锋), Jing Wang(王敬), Yi-Zhou Liu(刘易周),Chen Si(司晨), Fang Yuan(袁方), Wen-Hui Duan(段文晖), Jun Xu(许军). Chin. Phys. B, 2016, 25(3): 038504.
[5] Theoretical investigation of sulfur defects on structural, electronic, and elastic properties of ZnSe semiconductor
Muhammad Zafar, Shabbir Ahmed, M. Shakil, M. A. Choudhary, K. Mahmood. Chin. Phys. B, 2015, 24(7): 076106.
[6] First-principles calculations of structural, electronic, and thermodynamic properties of ZnO1-xSx alloys
Muhammad Zafar, Shabbir Ahmed, M. Shakil, M. A. Choudhary. Chin. Phys. B, 2014, 23(10): 106108.
[7] MgO-decorated carbon nanotubes for CO2 adsorption: first principles calculations
Zhu Feng, Dong Shan, Cheng Gang. Chin. Phys. B, 2011, 20(7): 077103.
No Suggested Reading articles found!