|
|
A double toroidal analyzer for scanning probe electron energy spectrometer |
Xu Chun-Kai (徐春凯), Zhang Pan-Ke (张盼科), Li Meng (郦盟), Chen Xiang-Jun (陈向军) |
Hefei National Laboratory for Physical Science at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China
Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China |
|
|
Abstract An ultra-high vacuum (UHV) compatible electron spectrometer employing a double toroidal analyzer has been developed. It is designed to be combined with a custom-made scanning tunneling microscope (STM) to study the spatially localized electron energy spectrum on a surface. A tip-sample system composed of a piezo-driven field-emission tungsten tip and a sample of highly ordered pyrolytic graphite (HOPG) is employed to test the performance of the spectrometer. Two-dimensional images of the energy-resolved and angle-dispersed electrons backscattered from the surface of HOPG are obtained, the performance is optimized and the spectrometer is calibrated. A complete electron energy loss spectrum covering the elastic peak to the secondary electron peaks for the HOPG surface, acquired at a tip voltage of -140 V and a sample current of 0.5 pA, is presented, demonstrating the viability of the spectrometer.
|
Received: 26 February 2014
Revised: 26 March 2014
Accepted manuscript online:
|
PACS:
|
34.80.-i
|
(Electron and positron scattering)
|
|
07.50.Ls
|
(Electrometers)
|
|
68.49.Jk
|
(Electron scattering from surfaces)
|
|
Fund: Project supported by the National Basic Research Program of China (Grant No. 2010CB923301) and the National Natural Science Foundation of China (Grant Nos. 11327404 and 11174268). |
Corresponding Authors:
Xu Chun-Kai
E-mail: xuck@ustc.edu.cn
|
About author: 34.80.-i; 07.50.Ls; 68.49.Jk |
Cite this article:
Xu Chun-Kai (徐春凯), Zhang Pan-Ke (张盼科), Li Meng (郦盟), Chen Xiang-Jun (陈向军) A double toroidal analyzer for scanning probe electron energy spectrometer 2014 Chin. Phys. B 23 073402
|
[1] |
Bosman M, Keast V J, Watanabe M, Maaroof A I and Cortie M B 2007 Nanotechnology 18 165505
|
[2] |
Nelayah J, Kociak M, Stéphan O, Abajo F J G, Tencé M, Henrard L, Taverna D, Pastoriza-Santos I, Liz-Marzán L M and Colliex C 2007 Nat. Phys. 3 348
|
[3] |
Chu M W, Chen C H, García de Abajo F J, Deng J P and Mou C Y 2008 Phys. Rev. B 77 245402
|
[4] |
Koh A L, Bao K, Khan I, Smith W E, Kothleitner G, Nordlander P, Maier S A and McComb D W 2009 ACS Nano 3 3015
|
[5] |
Nicoletti O, Pena F, Leary R K, Holland D J, Ducati C and Midgley P A 2013 Nature 502 80
|
[6] |
Suenaga K, Tencé M, Mory C, Colliex C, Kato H, Okazaki T, Shinohara H, Hirahara K, Bandow S and Iijima S 2000 Scinece 290 2280
|
[7] |
Pennycook S J, Varela M, Lupini A R, Oxley M P and Chisholm M F 2009 J. Electron Microsc. 58 87
|
[8] |
Suenaga K, Hasegawa K A, Niimi Y, Kobayashi H, Nakamura M, Liu Z, Sato Yuta, Koshino M and Iijima S 2012 J. Electron Microsc. 61 285
|
[9] |
Zhou W, Oxley M P, Lupini A R, Krivanek O L, Pennycook S J and Idrobo J C 2012 Microsc. Microanal. 18 1342
|
[10] |
Tomitori M, Hirade M, Suganuma Y and Arai T 2001 Surf. Sci. 493 49
|
[11] |
Miyatake Y, Nagamura T, Hattori K, Kannemitsu Y and Daimon H 2003 Jpn. J. Appl. Phys. 42 4848
|
[12] |
Palmer R E, Eves B J and Festy F 2002 Surf. Sci. 502 224
|
[13] |
Festy F and Palmer R E 2004 Appl. Phys. Lett. 85 5034
|
[14] |
Song M Y, Lawton J J, Robinson A P G and Palmer R E 2010 Phys. Rev. B 81 161411
|
[15] |
Liu W J, Xu C K, Li Y G, Ding Z J, Xu K Z and Chen X J 2009 Jpn. J. Appl. Phys. 48 122301
|
[16] |
Engelhardt H A, Black W, Menzel D and Liebl H 1981 Rev. Sci. Instrum. 52 835
|
[17] |
Leckey R C G 1987 J. Electron Spectrosc. Relat. Phenom. 43 183
|
[18] |
Huetz A, Lablanquie P, Andric L, Selles P and Mazeau J 1994 J. Phys. B 27 L13
|
[19] |
Reddish T J, Richmond G, Bagley G W, Wightman J P and Cvejanovic S 1997 Rev. Sci. Instrum. 68 2685
|
[20] |
Berger D, Filippov M, Niedrig H, Rau E I and Schlichting F 1999 J. Electron Spectrosc. Relat. Phenom. 105 119
|
[21] |
Siggel-King M R F, Lindsay R, Quinn F M, Pearson J, Fraser G and Thornton G 2004 J. Electron Spectrosc. Relat. Phenom. 137-140 721
|
[22] |
Boeyen R W and Williams J F 2005 Rev. Sci. Instrum. 76 063303
|
[23] |
Zhou X, Xu C K, Wei Z, Liu W J, Li J W, Chen X J, Williams J F and Xu K Z 2008 J. Electron Spectrosc. Relat. Phenom. 165 15
|
[24] |
Xu C K, Chen X J, Zhou X, Wei Z, Liu W J, Li J W, Williams J F and Xu K Z 2009 Rev. Sci. Instrum. 80 103705
|
[25] |
Toffoletto F, Leckey R C G and Riley J D 1985 Nucl. Instrum. Methods Phys. Res. B 12 282
|
[26] |
Hellings G J A, Ottevanger H, Knibbeler C L C M, Engelshoven J and Brongersma H H 1989 J. Electron Spectrosc. Relat. Phenom. 49 359
|
[27] |
Miron C, Simon M, Leclercq N and Morin P 1997 Rev. Sci. Instrum. 68 3728
|
[28] |
Ren X G, Ning C G, Deng J K, Zhang S F, Su G L, Huang F and Li G Q 2005 Rev. Sci. Instrum. 76 063103
|
[29] |
Lower J, Panajotovic R, Bellm S and Weigold E 2007 Rev. Sci. Instrum. 78 111301
|
[30] |
Zhang P K, Xu C K, Tang Y G and Chen X J 2014 J. Electron Spectrosc. Relat. Phenom. 193 39
|
[31] |
Hou Y B, Wang J H and Lu Q Y 2008 Rev. Sci. Instrum. 79 113707
|
[32] |
Tatar R C and Rabii S 1982 Phys. Rev. B 25 4126
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|