Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(6): 067801    DOI: 10.1088/1674-1056/23/6/067801

Design of a varactor-tunable metamaterial absorber

Lin Bao-Qin, Da Xin-Yu, Zhao Shang-Hong, Meng Wen, Li Fan, Fang Ying-Wu, Wang Jia-Fu
Institute of Information and Navigation, Air Force Engineering University, Xi'an 710077, China
Abstract  In this paper, we design a varactor-tunable metamaterial absorber (MA). The tunable MA is based on a mushroom-type high impedance surface (HIS), in which varactors are loaded between adjacent metal patches to adjust the capacitance and tune the resonance frequency, the primary ground plane is etched as the bias network to bias all of the varactors in parallel, and another ultra-thin grounded film is attached to the bottom. Its absorption characteristics are realized for electrically dielectric loss. The simulated values of a sample indicate that a tunable frequency range from 2.85 GHz to 2.22 GHz is achieved by adjusting the varactor capacitance from 0.1 pF to 2.0 pF, and better than 0.97 absorbance is realized; in addition, the tunable frequency range is expanded from 4.12 GHz to 1.70 GHz after optimization.
Keywords:  metamaterial absorber (MA)      high impedance surfaces (HISs)      varactor     
Received:  06 October 2013      Published:  15 June 2014
PACS:  78.20.Ci (Optical constants (including refractive index, complex dielectric constant, absorption, reflection and transmission coefficients, emissivity))  
  42.25.Bs (Wave propagation, transmission and absorption)  
Fund: Project supported by the National Natural Science Foundations of China (Grant Nos. 61271250 and 11204378).
Corresponding Authors:  Lin Bao-Qin     E-mail:

Cite this article: 

Lin Bao-Qin, Da Xin-Yu, Zhao Shang-Hong, Meng Wen, Li Fan, Fang Ying-Wu, Wang Jia-Fu Design of a varactor-tunable metamaterial absorber 2014 Chin. Phys. B 23 067801

[1] Caloz C and Itoh T 2006 Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications (New Jersey: John Wiley & Sons, Inc.) p. 2
[2] Pendry J B, Holden A J, Stewart W J and Youngs I 1996 Phys. Rev. Lett. 76 4773
[3] Pendry J B, Holden A J, Robbins D J and Stewart W J 1999 IEEE Trans. Microwave Theory Technol. 47 2075
[4] Veselago V G 1968 Sov. Phys. Usp. 10 509
[5] Shelby R A, Smith D R and Schultz S 2001 Science 292 77
[6] Sievenpiper D, Zhang L, Broas R F J, Alexopoulos N G and Yablonovitch E 1999 IEEE Trans. Microwave Theory Technol. 47 2059
[7] Zhou L and Chan C T 2004 Appl. Phys. Lett. 84 1444
[8] Yang F and Rahmat-Samii Y 2003 IEEE Trans. Anten. Propag. 51 2691
[9] Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F and Smith D R 2006 Science 314 977
[10] Tao H, Bingham C M, Strikwerda A C, Pilon D and Shrekenhamer D 2008 Phys. Rev. B 78 241103
[11] Avitzour Y, Urzhumov Y A and Shvets G 2009 Phys. Rev. B 79 045131
[12] Landy N I, Bingham C M, Tyler T, Jokerst N, Smith D R and Padilla W J 2009 Phys. Rev. B 79 125104
[13] Gu C, Qu S B, Pei Z B, Zhou H, Xu Z, Bai P, Peng W D and Lin B Q 2010 Chin. Phys. Lett. 27 117802
[14] Gu C, Qu S B, Pei Z and Xu Z 2011 Chin. Phys. B 20 037801
[15] Cheng Y Z, Gong R Z, Nie Y and Wang X 2012 Chin. Phys. B 21 127801
[16] Cheng Y Z, Nie Y, Gong R Z, Zheng D H, Fan Y N, Xiong X and Wang X 2012 Acta Phys. Sin. 61 134101 (in Chinese)
[17] Nie Y, Cheng Y Z and Gong R Z 2013 Chin. Phys. B 22 044102
[18] Lu L, Qu S B, Su X, Shang Y, Zhang J and Bai P 2013 Acta Phys. Sin. 62 208103 (in Chinese)
[19] Mias C 2003 Electron. Lett. 39 1060
[20] Yap J H and Mias C 2005 IEE Wideband and Multi-band Antennas and Arrays 7 171
[21] Satoshi Y, Keigo K, Masayuki N, Yoshiyuki Y and Hirokazu S 2011 IEICE Trans. Commun. 94 2306
[22] Costa F and Vastante G P 2011 IEEE Antennas and Wireless Propagation Letters 10 11
[23] Yang Y J, Huang Y J, Wen G J, Zhong J P and Sun H B 2012 Chin. Phys. B 21 038501
[24] Zhao J, Cheng Q, Chen J, Mei Q Q, Wei X J and Tie J C 2013 New J. Phys. 15 043049
[25] Mias C and Yap J H 2007 IEEE Trans. Anten. Propag. 55 1955
[26] Sievenpiper D F, Schaffner J H, Song H J, Loo R Y and Tangonan G 2003 IEEE Trans. Anten. Propag. 51 2713
[27] Sievenpiper D F and Schaffner J H 2002 Electron. Lett. 38 1237
[1] Improvements in reverse breakdown characteristics of THz GaAs Schottky barrier varactor based on metal-brim structure
Lu-Wei Qi(祁路伟), Xiao-Yu Liu(刘晓宇), Jin Meng(孟进), De-Hai Zhang(张德海), Jing-Tao Zhou(周静涛). Chin. Phys. B, 2020, 29(5): 057306.
[2] Optimization of terahertz monolithic integrated frequency multiplier based on trap-assisted physics model of THz Schottky barrier varactor
Lu-Wei Qi(祁路伟), Jin Meng(孟进), Xiao-Yu Liu(刘晓宇), Yi Weng(翁祎), Zhi-Cheng Liu(刘志成), De-Hai Zhang(张德海), Jing-Tao Zhou(周静涛), Zhi Jin(金智). Chin. Phys. B, 2020, 29(10): 104212.
[3] Superconducting tunable filter with constant bandwidth using coplanar waveguide resonators
Ying Jiang(蒋莹), Bo Li(李博), Bin Wei(魏斌), Xu-Bo Guo(郭旭波), Bi-Song Cao(曹必松), Li-Nan Jiang(姜立楠). Chin. Phys. B, 2017, 26(10): 108501.
[4] Design of a tunable frequency selective surface absorber as a loaded receiving antenna array
Lin Bao-Qin, Zhao Shang-Hong, Wei Wei, Da Xin-Yu, Zheng Qiu-Rong, Zhang Heng-Yang, Zhu Meng. Chin. Phys. B, 2014, 23(2): 024201.
[5] Varactor-tunable frequency selective surface with an embedded bias network
Lin Bao-Qin, Qu Shao-Bo, Tong Chuang-Ming, Zhou Hang, Zhang Heng-Yang, Li Wei. Chin. Phys. B, 2013, 22(9): 094103.
[6] A GaAs planar Schottky varactor diode for left-handed nonlinear transmission line applications
Dong Jun-Rong, Yang Hao, Tian Chao, Huang Jie, Zhang Hai-Ying. Chin. Phys. B, 2012, 21(6): 067303.
[7] A k-band broadband monolithic distributed frequency multiplier based on nonlinear transmission line
Huang Jie, Dong Jun-Rong, Yang Hao, Zhang Hai-Ying, Tian Chao, Guo Tian-Yi. Chin. Phys. B, 2011, 20(6): 060702.
No Suggested Reading articles found!