Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(6): 064207    DOI: 10.1088/1674-1056/23/6/064207
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Ultrashort pulse breaking in optical fiber with third-order dispersion and quintic nonlinearity

Zhong Xian-Qionga b, Zhang Xiao-Xiaa, Cheng Keb, Xiang An-Pingb
a State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Information, University of Electronic Science and Technology of China, Chengdu 610054, China;
b College of Optoelectronic Technology, Chengdu University of Information Technology, Chengdu 610225, China
Abstract  The optical wave breaking (OWB) characteristics in terms of the pulse shape, spectrum, and frequency chirp, in the normal dispersion regime of an optical fiber with both the third-order dispersion (TOD) and quintic nonlinearity (QN) are numerically calculated. The results show that the TOD causes the asymmetry of the temporal- and spectral-domain, and the chirp characteristics. The OWB generally appears near the pulse center and at the trailing edge of the pulse, instead of at the two edges of the pulse symmetrically in the case of no TOD. With the increase of distance, the relation of OWB to the TOD near the pulse center increases quickly, leading to the generation of ultra-short pulse trains, while the OWB resulting from the case of no TOD at the trailing edge of the pulse disappears gradually. In addition, the positive (negative) QN enhances (weakens) the chirp amount and the fine structures, thereby inducing the OWB phenomena to appear earlier (later). Thus, the TOD and the positive (negative) QN are beneficial (detrimental) to the OWB and the generation of ultra-short pulse trains.
Keywords:  optical wave breaking      third-order dispersion      quintic nonlinearity  
Received:  18 July 2013      Revised:  30 October 2013      Published:  15 June 2014
PACS:  42.65.Re (Ultrafast processes; optical pulse generation and pulse compression)  
  42.65.Sf (Dynamics of nonlinear optical systems; optical instabilities, optical chaos and complexity, and optical spatio-temporal dynamics)  
  42.70.Nq (Other nonlinear optical materials; photorefractive and semiconductor materials)  
Fund: Project supported by the Postdoctoral Fund of China (Grant No. 2011M501402), the National Natural Science Foundation of China (Grant No. 61275039), the 973 Program of China (Grant No. 2012CB315702), the Key Project of the Chinese Ministry of Education, China (Grant No. 210186), and the Major Project of the Natural Science Foundation supported by the Educational Department of Sichuan Province, China (Grant Nos. 13ZA0081 and 12ZB019).
Corresponding Authors:  Zhong Xian-Qiong     E-mail:  zxqlxh@yeah.net

Cite this article: 

Zhong Xian-Qiong, Zhang Xiao-Xia, Cheng Ke, Xiang An-Ping Ultrashort pulse breaking in optical fiber with third-order dispersion and quintic nonlinearity 2014 Chin. Phys. B 23 064207

[1] Wang H L, Yang A J and Leng Y X 2013 Chin. Phys. B 22 074208
[2] Wang H L, Leng Y X and Xu Z Z 2009 Chin. Phys. B 18 5375
[3] Zhao L M, Tang D Y, Wu X and Zhang W 2008 Opt. Commun. 281 3557
[4] Zhu X P, Li S G, Du Y, Han Y and Zhang W Q 2013 Chin. Phys. B 22 014215
[5] Li P, Shi L and Mao Q H 2013 Chin. Phys. B 22 074204
[6] Wu Y, Lou C Y, Han M, Wang T and Gao Y Z 2002 Chin. Phys. 11 578
[7] Cui H, Xu W C and Liu S H 2004 Chin. Phys. Lett. 21 2212
[8] Xu W C, Chen W C, Zhang S M, Luo A P and Liu S H 2002 Chin. Phys. 11 352
[9] Kamchatnov A M and Steudel H 1999 Opt. Commun. 162 162
[10] Anderson D, Desaix M, Lisak M and Quiroga-Teixeiro M L 1992 J. Opt. Soc. Am. B 9 1358
[11] Anderson D, Desaix M, Karlsson M, Lisak M and Quiroga-Teixeiro M L 1993 J. Opt. Soc. Am. B 10 1185
[12] Rosenberg C, Anderson D, Desaix M, Johannisson P and Lisak M 2007 Opt. Commun. 273 272
[13] Tomlinson W J, Stolen R H and Johnson A M 1985 Opt. Lett. 10 457
[14] Tamura K and Nakazawa M 1996 Opt. Lett. 21 68
[15] Ouyang C M, Chai L, Song Y J, Hu M L and Wang Q Y 2010 Optik 121 317
[16] Liu X M 2010 Phys. Rev. A 81 053819
[17] Liu X M 2010 Phys. Rev. A 82 053808
[18] Liu X M, Han D D, Sun Z P, Zeng C, Lu H, Mao D, Cui Y D and Wang F Q 2013 Sci. Rep. 3 2718
[19] Finot C, Kibler B, Provost L and Wabnitz S 2008 J. Opt. Soc. Am. B 25 1938
[20] Xia G, Huang D X and Yuan X H 2007 Acta Phys. Sin. 56 2212 (in Chinese)
[21] Ruehl A, Prochnow O, Schulta M, Wandt D and Kracht D 2007 Opt. Lett. 32 2590
[22] Zhao L M, Tang D Y, Tam H Y and Lu C 2008 Opt. Express 16 12102
[23] Zhou S, Kuznetsova L, Chong A and Wise F W 2005 Opt. Express 13 4869
[24] Wu J W, Luo F G, Zhang Q T and Cao M C 2009 Optics & Laser Technology 41 360
[25] Zhong X Q, Zhang X X, Chen K and Xiang A P 2010 Opt. Commun. 283 5187
[26] Zhong X Q, Zhang X X, Xiang A P and Cheng K 2012 Optics & Laser Technology 44 669
[27] Feng J, Xu W C, Liu W C, Li S X and Liu S H 2008 Acta Phys. Sin. 57 4978 (in Chinese)
[28] Hong W P 2002 Opt. Commun. 213 173
[1] Picosecond pulses compression at 1053-nm center wavelength by using a gas-filled hollow-core fiber compressor
Huang Zhi-Yuan, Wang Ding, Leng Yu-Xin, Dai Ye. Chin. Phys. B, 2015, 24(1): 014212.
[2] Exact breathing soliton solutions in combined time-dependent harmonic-lattice potential
You Lu-Yun, Li Hua-Mei, He Jun-Rong. Chin. Phys. B, 2014, 23(3): 030501.
[3] Supercontinuum generated in all-normal dispersion photonic crystal fibers with picosecond pump pulses
Li Pan, Shi Lei, Mao Qing-He. Chin. Phys. B, 2013, 22(7): 074204.
[4] Matter-wave solutions of Bose–Einstein condensates with three-body interaction in linear magnetic and time-dependent laser fields
Etienne Wamba, Timoléon C. Kofané, Alidou Mohamadou . Chin. Phys. B, 2012, 21(7): 070504.
[5] Similarity of interactions between (3+1)D spatiotemporal optical solitons in both the dispersive medium with cubic-quintic nonlinearity and the saturable medium
Peng Jin-Zhang, Yang Hong, Tang Yi. Chin. Phys. B, 2009, 18(6): 2364-2371.
[6] Effects of walk-off on cross-phase modulation induced modulation instability in an optical fibre with high-order dispersion
Zhong Xian-Qiong, Xiang An-Ping. Chin. Phys. B, 2007, 16(6): 1683-1688.
[7] Enhanced pulse compression induced by the interaction between the third-order dispersion and the cross-phase modulation in birefringent fibres
Zhang Shu-Min, Xu Wen-Cheng, Chen Wei-Cheng, Luo Ai-Ping, Liu Song-Hao. Chin. Phys. B, 2002, 11(4): 352-357.
[8] Modulation instability of femtosecond pulses in fibres with slowly decreasing dispersion
Zhang Shu-Min, Xu Wen-Cheng, Chen Wei-Cheng, Luo Ai-Ping, Guo Qi, Liu Song-Hao. Chin. Phys. B, 2002, 11(1): 39-43.
No Suggested Reading articles found!