Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(5): 050701    DOI: 10.1088/1674-1056/23/5/050701
GENERAL Prev   Next  

Cellular automata model for traffic flow with safe driving conditions

María Elena Lárraga, Luis Alvarez-Icaza
Instituto de Ingeniería, Universidad Nacional Autónoma de México, 04510, Coyoacán D. F., México
Abstract  In this paper, a recently introduced cellular automata (CA) model is used for a statistical analysis of the inner microscopic structure of synchronized traffic flow. The analysis focuses on the formation and dissolution of clusters or platoons of vehicles, as the mechanism that causes the presence of this synchronized traffic state with a high flow. This platoon formation is one of the most interesting phenomena observed in traffic flows and plays an important role both in manual and automated highway systems (AHS). Simulation results, obtained from a single-lane system under periodic boundary conditions indicate that in the density region where the synchronized state is observed, most vehicles travel together in platoons with approximately the same speed and small spatial distances. The examination of velocity variations and individual vehicle gaps shows that the flow corresponding to the synchronized state is stable, safe and highly correlated. Moreover, results indicate that the observed platoon formation in real traffic is reproduced in simulations by the relation between vehicle headway and velocity that is embedded in the dynamics definition of the CA model.
Keywords:  traffic flow models      synchronized traffic      cellular automata      platoons formation  
Received:  10 September 2013      Revised:  20 December 2013      Accepted manuscript online: 
PACS:  07.05.Tp (Computer modeling and simulation)  
  45.70.Vn (Granular models of complex systems; traffic flow)  
  89.40.Bb (Land transportation)  
Fund: Project supported by the DGAPA, UNAM (Grant No. IN104913).
Corresponding Authors:  María Elena Lárraga     E-mail:
About author:  07.05.Tp; 45.70.Vn; 89.40.Bb

Cite this article: 

María Elena Lárraga, Luis Alvarez-Icaza Cellular automata model for traffic flow with safe driving conditions 2014 Chin. Phys. B 23 050701

[3] Lighthill M J and Whitham G B 1955 Proc. R. Soc. Lond. 229 317
[4] Richards P I 1956 Opera. Res. 4 42
[5] Papageorgiou M 1998 Transport. Res. A-Pol. 32 323
[6] Daganzo C F 2004 In Traffic Flow, Cellular Automata=Kinematic Waves (Research Reports), Institute of Transportation Studies, UC Berkeley
[7] Nagel K and Schreckenberg M 1992 J. Phys. I France 2 2221
[8] Krauss S, Wagner P and Gawron C 1997 Phys. Rev. E 55 5597
[9] Knospe W, Santen L, Schadschneider A and Schreckenberg M 2000 J. Phys. A: Math. Gen. 33 L477
[10] Lárraga M E, del Río J A and Schadschneider A 2004 J. Phys. A: Math. Gen. 37 3769
[11] Laŕraga M E, del Río J A and AÍvarez L 2005 Transport. Res. C-Emer. 13 63
[12] Maerivot S and Moor B D 2005 Phys. Rep. 419 1
[13] Lee H K, Barlovic R, Schreckenberg M and Kim D 2004 Phys. Rev. Lett. 92 238702
[14] Lan W, Chiou Y C, Lin Z S and Hsu C C 2009 Phys. A Stat. Mech. App. 388 3917
[15] Hu S X, Gao K, Wang B H and Lu Y F 2008 Chin. Phys. B 17 1863
[16] Zhao B H, Hu M B, Jiang R and Wu Q S 2009 Chin. Phys. Lett. 26 118902
[17] Peng Y, Shang H Y and Lu H P 2011 Commun. Theor. Phys. 56 177
[18] Ding J X, Huan H J and Tian Q 2011 Chin. Phys. B 20 28901
[19] Shang H Y and Peng Y 2012 J. Stat. Mech. 2012 P10001
[20] Bentaleb K, Jetto K, Ez-Zahraouy H and Benyoussef A 2013 Chin. Phys. B 22 018902
[21] Li X G, Gao Z Y, Jia B and Jiang R 2010 Chin. Phys. B 19 060501
[22] Jin C J, Wang W, Gao K and Jiang R 2011 Chin. Phys. B 20 064501
[23] He H D, Lu W Z and Dong L Y 2011 Chin. Phys. B 20 040514
[24] Meng Q and Weng J 2011 Transport. Res. C-Emer. 19 1263
[25] Wang M, Zeng J W, Qian Y S, Li W J, Yang F and Jia X X 2012 Chin. Phys. B 21 70502
[26] Jetto K, Ez-Zahraouy H and Benyoussef A 2012 Chin. Phys. B 21 118901
[27] Liu Y D 2012 Math. Probl. Eng. 2012 717085
[28] Lárraga M E and Alvarez-Icaza L 2010 Physica 389 5425
[29] AÍvarez L and Horowitz R 1999 Vehicle Sys. Dyn. 32 23
[30] Barlovic R, Schadschneider L S A and Schreckenberg M 1998 Eur Phys J. B 5 793
[31] Nishinari K, Fukui M and Schadschneider A 2004 J. Phys. A: Math. Gen. 37 3101
[32] Ez-Zahraouy H, Jetto K and Benyoussef A 2006 Chin. J. Phys. 44 486
[33] Guzmn H A 2012 Un modelo de autómata celular realista para el tráfico vehicular heterogéneo (Masters Thesis) (Universidad Nacional Autónoma de México) (in Spanish)
[34] Carbaugh J, Godbole D and Sengupta R 1997 American Control Conference, 1997 Proceedings of the 1997 3 2041
[35] Pline J L 1999 Traffic Engineering Handbook (6th edn.) (Prentice Hall College Div)
[36] Knosp W, Santen L, Schadschneider A and Schreckenberg M 2004 Phys. Rev. E 70 016115
[37] Schadschneider A 2006 Physica A 372 142
[1] An extended cellular automata model with modified floor field for evacuation
Da-Hui Qin(秦大辉), Yun-Fei Duan(段云飞), Dong Cheng(程栋), Ming-Zhu Su(苏铭著), Yong-Bo Shao(邵永波). Chin. Phys. B, 2020, 29(9): 098901.
[2] Effects of rainy weather on traffic accidents of a freeway using cellular automata model
Ming-Bao Pang(庞明宝), Bo-Ning Ren(任泊宁). Chin. Phys. B, 2017, 26(10): 108901.
[3] Influence of bus stop with left-turn lines between two adjacent signalized intersections
Ming-Bao Pang(庞明宝), Lan-Hang Ye(叶兰杭), Ya-Nan Pei(裴亚男). Chin. Phys. B, 2016, 25(8): 088901.
[4] Pedestrian choice behavior analysis and simulation of vertical walking facilities in transfer station
Yong-Xing Li(李永行), Hong-Fei Jia(贾洪飞), Jun Li(李军), Ya-Nan Zhou(周亚楠), Zhi-Lu Yuan(原志路), Yan-Zhong Li(李延忠). Chin. Phys. B, 2016, 25(10): 108901.
[5] A new cellular automata model of traffic flow with negative exponential weighted look-ahead potential
Xiao Ma(马骁), Wei-Fan Zheng(郑伟范), Bao-Shan Jiang(江宝山), Ji-Ye Zhang(张继业). Chin. Phys. B, 2016, 25(10): 108902.
[6] Study on bi-directional pedestrian movement using ant algorithms
Sibel Gokce, Ozhan Kayacan. Chin. Phys. B, 2016, 25(1): 010508.
[7] Effects of evacuation assistant's leading behavior on the evacuation efficiency: Information transmission approach
Wang Xiao-Lu, Guo Wei, Zheng Xiao-Ping. Chin. Phys. B, 2015, 24(7): 070504.
[8] Stair evacuation simulation based on cellular automataconsidering evacuees' walk preferences
Ding Ning, Zhang Hui, Chen Tao, Peter B. Luh. Chin. Phys. B, 2015, 24(6): 068801.
[9] A cellular automata model of traffic flow with variable probability of randomization
Zheng Wei-Fan, Zhang Ji-Ye. Chin. Phys. B, 2015, 24(5): 058902.
[10] A new cellular automaton for signal controlled traffic flow based on driving behaviors
Wang Yang, Chen Yan-Yan. Chin. Phys. B, 2015, 24(3): 038902.
[11] Epidemic propagation on adaptive coevolutionary networks with preferential local-world reconnecting strategy
Song Yu-Rong, Jiang Guo-Ping, Gong Yong-Wang. Chin. Phys. B, 2013, 22(4): 040205.
[12] Simulation of pedestrian evacuation based on an improved dynamic parameter model
Zhu Nuo,Jia Bin,Shao Chun-Fu,Yue Hao. Chin. Phys. B, 2012, 21(5): 050501.
[13] Characteristics of synchronized traffic in mixed traffic flow
Ning Hong-Xin,Xue Yu. Chin. Phys. B, 2012, 21(4): 040506.
[14] Analytical investigation of the boundary-triggered phase transition dynamics in a cellular automata model with a slow-to-start rule
Jia Ning, Ma Shou-Feng, Zhong Shi-Quan. Chin. Phys. B, 2012, 21(10): 100206.
[15] A study on the effects of the transit parking time on traffic flow based on cellular automata theory
Qian Yong-Sheng, Shi Pei-Ji, Zeng Qiong, Ma Chang-Xi, Lin Fang, Sun Peng, Wang Hailong. Chin. Phys. B, 2010, 19(4): 048201.
No Suggested Reading articles found!