Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(4): 047201    DOI: 10.1088/1674-1056/23/4/047201
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Influence of the channel electric field distribution on the polarization Coulomb field scattering in In0.18Al0.82N/AlN/GaN heterostructure field-effect transistors

Yu Ying-Xiaa, Lin Zhao-Juna, Luan Chong-Biaoa, Lü Yuan-Jieb, Feng Zhi-Hongb, Yang Minga, Wang Yu-Tanga
a School of Physics, Shandong University, Jinan 250100, China;
b Science and Technology on ASIC Laboratory, Hebei Semiconductor Research Institute, Shijiazhuang 050051, China
Abstract  By making use of the quasi-two-dimensional (quasi-2D) model, the current-voltage (I-V) characteristics of In0.18Al0.82N/AlN/GaN heterostructure field-effect transistors (HFETs) with different gate lengths are simulated based on the measured capacitance-voltage (C-V) characteristics and I-V characteristics. By analyzing the variation of the electron mobility for the two-dimensional electron gas (2DEG) with electric field, it is found that the different polarization charge distributions generated by the different channel electric field distributions can result in different polarization Coulomb field scatterings. The difference between the electron mobilities primarily caused by the polarization Coulomb field scatterings can reach up to 1522.9 cm2/V· s for the prepared In0.18Al0.82N/AlN/GaN HFETs. In addition, when the 2DEG sheet density is modulated by the drain-source bias, the electron mobility presents a peak with the variation of the 2DEG sheet density, the gate length is smaller, and the 2DEG sheet density corresponding to the peak point is higher.
Keywords:  In0.18Al0.82N/AlN/GaN heterostructure field-effect transistors      channel electric field distribution      polarization Coulomb field scattering      two-dimensional electron gas mobility  
Received:  03 June 2013      Revised:  30 August 2013      Accepted manuscript online: 
PACS:  72.80.Ey (III-V and II-VI semiconductors)  
  72.10.-d (Theory of electronic transport; scattering mechanisms)  
  72.20.Fr (Low-field transport and mobility; piezoresistance)  
Fund: Projected supported by the National Natural Science Foundation of China (Grant No.11174182) and the Specialized Research Fund for the Doctoral Program of Higher Education, China (Grant No.20110131110005).
Corresponding Authors:  Lin Zhao-Jun     E-mail:  linzj@sdu.edu.cn
About author:  72.80.Ey; 72.10.-d; 72.20.Fr

Cite this article: 

Yu Ying-Xia, Lin Zhao-Jun, Luan Chong-Biao, Lü Yuan-Jie, Feng Zhi-Hong, Yang Ming, Wang Yu-Tang Influence of the channel electric field distribution on the polarization Coulomb field scattering in In0.18Al0.82N/AlN/GaN heterostructure field-effect transistors 2014 Chin. Phys. B 23 047201

[1] Carlin J F, Feltin E, Ph M A and Grandjean N 2006 Appl. Phys. Lett. 89 062106
[2] Carlin J F, Feltin E, Ph M A, Grandjean N, Darakchieva V, Monemar B, Lorenz M and Ramm G 2008 J. Appl. Phys. 103 093714
[3] Mikulics M, Stoklas R, Dadgar A, Gregušová D, Novák J, Grützmacher D, Krost A and Kordoš P 2010 Appl. Phys. Lett. 97 173505
[4] Lecourt F, Ketteniss N, Behmenburg H, Defrance N, Hoel V, Eickelkamp M, Vescan A, Giesen C, Heuken M and de Jaeger J C 2011 IEEE Electron. Dev. Lett. 32 1537
[5] Zhao J Z, Lin Z J, Corrigan T D, Wang Z, You Z D and Wang Z G 2007 Appl. Phys. Lett. 91 173507
[6] Lü Y J, Lin Z J, Zhang Y, Meng L G, Luan C B, Cao Z F, Chen H and Wang Z G 2011 Appl. Phys. Lett. 98 123512
[7] Kuzmík J 2001 IEEE Electron. Dev. Lett. 22 510
[8] Zhang S, Li M C, Feng Z H, Liu B, Yin J Y and Zhao L C 2009 Appl. Phys. Lett. 95 212101
[9] Leach J H, Ni X, Li X, Wu M, Özgür Ü, Morkoc H, Zhou L, Cullen D A, Smith D J, Cheng H, Kurdak C, Meyer J R and Vurgaftman I 2010 J. Appl. Phys. 107 083706
[10] Luan C B, Lin Z J, Feng Z H, Meng L G, Lü Y J, Cao Z F, Yu Y X and Wang Z G 2012 J. Appl. Phys. 112 054513
[11] Yu Y X, Lin Z J, Luan C B, Wang Y T, Chen H and Wang Z G 2013 Chin. Phys. B 22 067203
[12] Yu T H and Brennan K F 2003 IEEE Trans. Electron. Dev. 50 315
[13] Moradi M and Valizadeh P 2011 J. Appl. Phys. 109 024509
[14] Rivera C and Muñoz E 2009 Appl. Phys. Lett. 94 053501
[15] Anwar A F, Webster R T and Smith K V 2006 Appl. Phys. Lett. 88 203510
[1] Parasitic source resistance at different temperatures for AlGaN/AlN/GaN heterostructure field-effect transistors
Yan Liu(刘艳), Zhao-Jun Lin(林兆军), Yuan-Jie Lv(吕元杰), Peng Cui(崔鹏), Chen Fu(付晨), Ruilong Han(韩瑞龙), Yu Huo(霍宇), Ming Yang(杨铭). Chin. Phys. B, 2017, 26(9): 097104.
[2] Influence of the AlGaN barrier thickness on polarization Coulomb field scattering in an AlGaN/AlN/GaN heterostructure field-effect transistor
Lv Yuan-Jie, Feng Zhi-Hong, Gu Guo-Dong, Yin Jia-Yun, Fang Yu-Long, Wang Yuan-Gang, Tan Xin, Zhou Xing-Ye, Lin Zhao-Jun, Ji Zi-Wu, Cai Shu-Jun. Chin. Phys. B, 2015, 24(8): 087306.
[3] Influence of temperature on strain-induced polarization Coulomb field scattering in AlN/GaN heterostructure field-effect transistors
Lü Yuan-Jie, Feng Zhi-Hong, Lin Zhao-Jun, Guo Hong-Yu, Gu Guo-Dong, Yin Jia-Yun, Wang Yuan-Gang, Xu Peng, Song Xu-Bo, Cai Shu-Jun. Chin. Phys. B, 2014, 23(7): 077105.
[4] Electron mobility in the linear region of AlGaN/AlN/GaN heterostructure field-effect transistor
Yu Ying-Xia, Lin Zhao-Jun, Luan Chong-Biao, Wang Yu-Tang, Chen Hong, Wang Zhan-Guo. Chin. Phys. B, 2013, 22(6): 067203.
[5] Influence of Schottky drain contacts on the strained AlGaN barrier layer of AlGaN/AlN/GaN heterostructure field-effect transistors
Cao Zhi-Fang, Lin Zhao-Jun, Lü Yuan-Jie, Luan Chong-Biao, Wang Zhan-Guo. Chin. Phys. B, 2013, 22(4): 047102.
No Suggested Reading articles found!