Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(4): 040501    DOI: 10.1088/1674-1056/23/4/040501
GENERAL Prev   Next  

Robust H cluster synchronization analysis of Lurie dynamical networks

Guo Linga, Nian Xiao-Hongb, Pan Huanc, Bing Zhi-Tongd
a College of Electrical Engineering, Northwest University for Nationalities, Lanzhou 730030, China;
b College of Information Science and Engineering, Central South University, Changsha 410075, China;
c College of Physics Electrical Information Engineering, Ningxia University, Yinchuan 750021, China;
d Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
Abstract  The cluster synchronization problem of complex dynamical networks with each node being a Lurie system with external disturbances and time-varying delay is investigated in this paper. Some criteria for cluster synchronization with desired H performance are presented by using a local linear control scheme. Firstly, sufficient conditions are established to realize cluster synchronization of the Lurie dynamical networks without time delay. Then, the notion of the cluster synchronized region is introduced, and some conditions guaranteeing the cluster synchronized region and unbounded cluster synchronized region are derived. Furthermore, the cluster synchronization and cluster synchronized region in the Lurie dynamical networks with time-varying delay are considered. Numerical examples are finally provided to verify and illustrate the theoretical results.
Keywords:  cluster synchronization      Lurie dynamics network      H performance      time-varying delay  
Received:  07 July 2013      Revised:  24 September 2013      Accepted manuscript online: 
PACS:  05.45.Gg (Control of chaos, applications of chaos)  
  05.45.Jn (High-dimensional chaos)  
  05.45.Pq (Numerical simulations of chaotic systems)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61075065, 60774045, and U1134108), the Talent Introduction Scientific Research Foundation of Northwest University for Nationalities (Grant No. xbmuyjrc201304), and the Foundation for Young Talents of Gansu Province, China (Grant No. 1208RJYA013).
Corresponding Authors:  Guo Ling     E-mail:
About author:  05.45.Gg; 05.45.Jn; 05.45.Pq

Cite this article: 

Guo Ling, Nian Xiao-Hong, Pan Huan, Bing Zhi-Tong Robust H cluster synchronization analysis of Lurie dynamical networks 2014 Chin. Phys. B 23 040501

[1] Chen T P, Liu X W and Lu W L 2007 IEEE T. Circuits-I 54 1317
[2] Liu X, Wang J Z and Huang L 2007 Physica A 386 543
[3] Liu C, Duan Z S, Chen G R and Huang L 2007 Physica A 386 531
[4] Duan Z S, Chen G R and Huang L 2008 Phys. Lett. A 372 3741
[5] Zhang Q J, Lu J, Lü J H and Tse C K 2008 IEEE T. Circuits-II 55 183
[6] Li Z K, Duan Z S and Chen G R 2011 Int. J. Control 84 216
[7] Lin P, Jia Y M and Li L 2008 Syst. Control. Lett. 57 643
[8] Hu G Q 2011 Int. J. Control 84 1
[9] Wen G H, Duan Z S, Li Z K and Chen G R 2012 Int. J. Control 85 384
[10] Wen G H, Duan Z S, Yu W W and Chen G R 2013 Int. J. Robust. Nonlinearity 23 602
[11] Ma Z J, Liu Z R and Zhang G 2006 Chaos 16 023103
[12] Wu W, Zhou W J and Chen T P 2009 IEEE T. Circuits-I 56 829
[13] Xia W G and Cao M 2011 Automatica 47 2395
[14] Wu X J and Lu H T 2011 Phys. Lett. A 375 1559
[15] Liu X W and Chen T P 2011 IEEE T. Neural Network 22 1009
[16] Wang T, Li T, Yang X and Fei S M 2012 Neurocomputing 83 72
[17] Guo L, Nian X H, Zhao Y and Duan Z S 2012 IET Control Theory A 6 2499
[18] Su H, Rong Z, Chen M Z, Wang X, Chen G and Wang H 2013 IEEE Trans. Cybern. 43 394
[19] Yao H X and Wang S G 2012 Chin. Phys. B 21 110506
[20] Wu X J and Lu H T 2011 Phys. Lett. A 375 1559
[21] Wu J S, Jiao L C and Chen G R 2011 Chin. Phys. B 20 060503
[22] Anderson B D O, Yu C, Fidan B and Hendrickx J 2008 IEEE Control Syst. Mag. 28 48
[23] Blasius B, Huppert A and Stone L 1999 Nature 399 354
[24] Dolby A S and Grubb T C 1998 Anim. Behav. 56 501
[25] Hegselmann R and Krause U 2002 JASSS-The Journal of Artificia 5 1
[26] Khalil H 2002 Nonlinear Systems (Englewood Cliffs NJ: Prentice Hall)
[27] Chua L O 1994 J. Circ. Syst. Comput. 4 17
[28] Ruoff P, Vinsjevik M and Monnerjahn C 2001 J. Theor. Biol. 209 29
[29] Gazi V and Passino K M 2003 IEEE T. Automat. Control 48 692
[30] Yalcin M E, Suykens J A K and Vandewalle J P L 2001 Int. J. Bifur. Chaos 11 1707
[31] Huang H and Feng G 2008 Chaos 18 033113
[32] Boyd S, Ghaoui L E, Feron E and Balakrishnan V 1994 Linear Matrix Inequalities in System and Control Theory (Philadelphia, PA: SIAM)
[33] Iwasaki T and Skelton R 1994 Automatica 30 1307
[1] Consensus of multiple autonomous underwater vehicles with double independent Markovian switching topologies and timevarying delays
Zhe-Ping Yan(严浙平), Yi-Bo Liu(刘一博), Jia-Jia Zhou(周佳加), Wei Zhang(张伟), Lu Wang(王璐). Chin. Phys. B, 2017, 26(4): 040203.
[2] Cluster synchronization of community network with distributed time delays via impulsive control
Hui Leng(冷卉), Zhao-Yan Wu(吴召艳). Chin. Phys. B, 2016, 25(11): 110501.
[3] Robust H control of uncertain systems with two additive time-varying delays
M. Syed Ali, R. Saravanakumar. Chin. Phys. B, 2015, 24(9): 090202.
[4] Cluster synchronization in community network with nonidentical nodes via intermittent pinning control
Gan Lu-Yi-Ning, Wu Zhao-Yan, Gong Xiao-Li. Chin. Phys. B, 2015, 24(4): 040503.
[5] Exponential synchronization of chaotic Lur'e systems with time-varying delay via sampled-data control
R. Rakkiyappan, R. Sivasamy, S. Lakshmanan. Chin. Phys. B, 2014, 23(6): 060504.
[6] Stability analysis of Markovian jumping stochastic Cohen–Grossberg neural networks with discrete and distributed time varying delays
M. Syed Ali. Chin. Phys. B, 2014, 23(6): 060702.
[7] Exponential synchronization of complex dynamical networks with Markovian jumping parameters using sampled-data and mode-dependent probabilistic time-varying delays
R. Rakkiyappan, N. Sakthivel, S. Lakshmanan. Chin. Phys. B, 2014, 23(2): 020205.
[8] Improved delay-dependent robust H control of an uncertain stochastic system with interval time-varying and distributed delays
M. Syed Ali, R. Saravanakumar. Chin. Phys. B, 2014, 23(12): 120201.
[9] Cluster synchronization of uncertain complex networks with desynchronizing impulse
Cai Guo-Liang, Jiang Sheng-Qin, Cai Shui-Ming, Tian Li-Xin. Chin. Phys. B, 2014, 23(12): 120505.
[10] Cluster exponential synchronization of a class of complex networks with hybrid coupling and time-varying delay
Wang Jun-Yi, Zhang Hua-Guang, Wang Zhan-Shan, Liang Hong-Jing. Chin. Phys. B, 2013, 22(9): 090504.
[11] Leader–following consensus control for networked multi-teleoperator systems with interval time-varying communication delays
M. J. Park, S. M. Lee, J. W. Son, O. M. Kwon, E. J. Cha. Chin. Phys. B, 2013, 22(7): 070506.
[12] H synchronization of chaotic neural networks with time-varying delays
O. M. Kwon, M. J. Park, Ju H. Park, S. M. Lee, E. J. Cha. Chin. Phys. B, 2013, 22(11): 110504.
[13] Pinning synchronization of time-varying delay coupled complex networks with time-varying delayed dynamical nodes
Wang Shu-Guo,Yao Hong-Xing. Chin. Phys. B, 2012, 21(5): 050508.
[14] Cluster projective synchronization of complex networks with nonidentical dynamical nodes
Yao Hong-Xing, Wang Shu-Guo. Chin. Phys. B, 2012, 21(11): 110506.
[15] Robust stability analysis of Takagi–Sugeno uncertain stochastic fuzzy recurrent neural networks with mixed time-varying delays
M. Syed Ali. Chin. Phys. B, 2011, 20(8): 080201.
No Suggested Reading articles found!