Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(2): 024210    DOI: 10.1088/1674-1056/23/2/024210
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Evolution of modes in double-clad Raman fiber amplifier

Wang Wen-Liang, Huang Liang-Jin, Leng Jin-Yong, Guo Shao-Feng, Jiang Zong-Fu
College of Optoelectric Science and Engineering, National University of Defense Technology, Changsha 410073, China
Abstract  Stimulated Raman scattering in a double cladding optical fiber is studied with a continuous wave laser used as a pump source. Under various launch conditions, pump modes are differently excited. Considering the mode coupling effect among the pump modes, the evolution of the power in the Stokes modes is studied. The results show that the scattered waves (the Stokes waves) in the fiber core with 9-μm diameter and 0.14 NA could propagate predominantly in the fundamental mode of the fiber by carefully adjusting the pump light launching conditions.
Keywords:  fiber nonlinear optics      high power Raman fiber amplifier      fiber mode     
Received:  23 April 2013      Published:  12 December 2013
PACS:  42.55.Ye (Raman lasers)  
  42.55.Wd (Fiber lasers)  
  42.60.Jf (Beam characteristics: profile, intensity, and power; spatial pattern formation)  
Corresponding Authors:  Leng Jin-Yong     E-mail:  lengjy@sina.com
About author:  42.55.Ye; 42.55.Wd; 42.60.Jf

Cite this article: 

Wang Wen-Liang, Huang Liang-Jin, Leng Jin-Yong, Guo Shao-Feng, Jiang Zong-Fu Evolution of modes in double-clad Raman fiber amplifier 2014 Chin. Phys. B 23 024210

[1] Raman C V and Krishnan K S 1928 Nature 121 501
[2] Stolen R H and Ippen E P 1973 Appl. Phys. Lett. 22 276
[3] Nilsson J, Sahu J K, Jang J N, Sahu J K, Jang J N, Selvas R, Hanna D C and Grudinin A B 2002 Proc. Optical Amplifiers and Their Applications 2002 PD2-1/2/3
[4] Wang H Y and Huang Z Q 2005 Chin. Phys. 14 2560
[5] Men Z W, Fang W H, Sun X P, Li Z W, Yi H W, Wang Z M, Gao S Q and Lu G H 2008 Chin. Phys. Lett. 25 3999
[6] Chiang K S 1992 Opt. Lett. 17 352
[7] Xu J M, Leng J Y, Han K, Zhou P and Hou J 2012 Acta Phys. Sin. 61 074204 (in Chinese)
[8] Yan P G, Ruan S C, Yu Y Q, Guo C Y, Guo Y and Liu C X 2006 Chin. Phys. Lett. 23 1476
[9] Yan P G, Ruan S C, Guo C Y, YU Y Q, Su H and Liu C X 2006 Chin. Phys. Lett. 23 2972
[10] Ji J H 2011 "Cladding-Pumped Raman Fiber Laser Sources" (Ph. D. Thesis) (Southampton: University of Southampton of UK)
[11] Agrawal G P 2010 Nonlinear Fiber Optics, 4th edn. (Beijing: Publishing House of Electronics Industry) p. 207 (in Chinese)
[12] Gong M L, Yuan Y Y, Li C, Yan P, Zhang H T and Liao S Y 2007 Opt. Express 15 3236
[13] Soh D B S, Nilsson J, Baek S, Codemard C, Jeong Y and Philippov V 2004 J. Opt. Soc. Am. A 21 1241
[14] Shmal’ko A V 1984 Czech. J. Phys. B 34 538
[15] Fermann M E 1998 Opt. Lett. 23 52
[1] Selective synthesis of three-dimensional ZnO@Ag/SiO2@Ag nanorod arrays as surface-enhanced Raman scattering substrates with tunable interior dielectric layer
Jia-Jia Mu(牟佳佳), Chang-Yi He(何畅意), Wei-Jie Sun(孙伟杰), Yue Guan(管越). Chin. Phys. B, 2019, 28(12): 124204.
[2] Multi-wavelength continuous-wave Nd:YVO4 self-Raman laser under in-band pumping
Li Fan(樊莉), Xiao-Dong Zhao(赵孝冬), Yun-Chuan Zhang(张蕴川), Xiao-Dong Gu(顾晓东), Hao-Peng Wan(万浩鹏), Hui-Bo Fan(范会博), Jun Zhu(朱骏). Chin. Phys. B, 2019, 28(8): 084210.
[3] High-power linearly-polarized tunable Raman fiber laser
Jiaxin Song(宋家鑫), Hanshuo Wu(吴函烁), Jiangming Xu(许将明), Hanwei Zhang(张汉伟), Jun Ye(叶俊), Jian Wu(吴坚), Pu Zhou(周朴). Chin. Phys. B, 2018, 27(9): 094209.
[4] An efficient continuous-wave YVO4/Nd: YVO4/YVO4 self-Raman laser pumped by a wavelength-locked 878.9 nm laser diode
Li Fan(樊莉), Weiqian Zhao(赵伟倩), Xin Qiao(乔鑫), Changquan Xia(夏长权), Lichun Wang(汪丽春), Huibo Fan(范会博), Mingya Shen(沈明亚). Chin. Phys. B, 2016, 25(11): 114207.
[5] Raman gains of ADP and KDP crystals
Zhou Hai-Liang, Zhang Qing-Hua, Wang Bo, Xu Xin-Guang, Wang Zheng-Ping, Sun Xun, Zhang Fang, Zhang Li-Song, Liu Bao-An, Chai Xiang-Xu. Chin. Phys. B, 2015, 24(4): 044206.
[6] Preparation of SiO2@Au nanorod array as novel surface enhanced Raman substrate for trace pollutants detection
Hou Meng-Jing, Zhang Xian, Cui Xiao-Yang, Liu Can, Li Zheng-Cao, Zhang Zheng-Jun. Chin. Phys. B, 2015, 24(3): 034203.
[7] Mode decoupling in solid state ring laser based on stimulated Raman effect in polar crystals
Luo Zhang, Yuan Xiao-Dong, Ye Wei-Min, Zeng Chun, Ji Jia-Rong. Chin. Phys. B, 2011, 20(2): 024205.
[8] Modelling of passively Q-switched lasers with intracavity Raman conversion
Su Fu-Fang, Zhang Xing-Yu, Wang Qing-Pu, Chang Jun, Jia Peng, Li Shu-Tao, Zhang Xiao-Lei, Cong Zhen-Hua. Chin. Phys. B, 2007, 16(11): 3370-3376.
[9] LINEWIDTH REDUCTION IN AN INVERSIONLESS LASER WITH PUMP PHASE FLUCTUATIONS
Hu Xiang-ming, Peng Jin-sheng. Chin. Phys. B, 1999, 8(2): 143-149.
No Suggested Reading articles found!