Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(8): 085201    DOI: 10.1088/1674-1056/22/8/085201

X-ray spectra of high temperature tungsten plasma calculated with collisional radiative model

Wang Juna b, Zhang Honga, Cheng Xin-Lua
a School of Physical Science and Technology, Sichuan University, Chengdu 610064, China;
b College of Science, Sichuan University of Science and Engineering, Zigong 643000, China
Abstract  Tungsten is regarded as an important candidate of plasma facing material in international thermonuclear experimental reactor (ITER), so the determination and modeling of spectra of tungsten plasma, especially the spectra at high temperature were intensely focused on recently. In this work, using the atomic structure code of Cowan, a collisional radiative model (CRM) based on the spin-orbit-split-arrays is developed. Based on this model, the charge state distribution of tungsten ions is determined and the soft X-ray spectra from high charged ions of tungsten at different temperatures are calculated. The results show that both the average ionization charge and line positions are well agreed with others calculations and measurements with discrepancies of less than 0.63% and 1.26%, respectively. The spectra at higher temperatures are also reported and the relationship between ion abundance and temperature is predicted in this work.
Keywords:  tungsten plasma      high temperature X-ray spectra      collisional radiative model  
Received:  24 September 2012      Revised:  26 December 2012      Published:  27 June 2013
PACS:  52.20.Hv (Atomic, molecular, ion, and heavy-particle collisions)  
  32.70.Cs (Oscillator strengths, lifetimes, transition moments)  
  32.30.Jc (Visible and ultraviolet spectra)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11074176) and the Science Foundation of College of Science, Sichuan University of Science and Engineering, China (Grant No. 10LXYA01).
Corresponding Authors:  Cheng Xin-Lu     E-mail:

Cite this article: 

Wang Jun, Zhang Hong, Cheng Xin-Lu X-ray spectra of high temperature tungsten plasma calculated with collisional radiative model 2013 Chin. Phys. B 22 085201

[1] Skladnik-Sadowska E, Malinowski K, Sadowski M J, Wolowski J, Gasior P, Kubkowska M, Rosinski M, Marchenko A K and Sartowska B 2009 J. Nucl. Mater. 390-391 847
[2] Clementson J, Beiersdorfer P, Magee E W, McLean H S and Wood R D 2010 J. Phys. B: At. Mol. Opt. Phys. 43 144009
[3] Biedermann C, Radtke R, Seidel R and Putterich T 2009 Phys. Scr. T134 014026
[4] Podpaly Y, Clementson J, Beiersdorfer P, Willianson J, Brown G V and Gu M F 2009 Phys. Rev. A 80 052504
[5] Neu R, Fournier K B, Schlogl D and Rice J 1997 J. Phys. B: At. Mol. Opt. Phys. 30 5057
[6] Neu R, Fournier K B, Bolshukhin D and Dux R 2001 Phys. Scr. T92 307
[7] Safronova U I, Safronova A S, Beiersdorfer P and Johnson W R 2011 J. Phys. B: At. Mol. Opt. Phys. 44 035005
[8] Yanagibayashi J, Nakano T, Iwamae A, Kubo H, Hasuo M and Itami K 2010 J. Phys. B: At. Mol. Opt. Phys. 43 144013
[9] Ralchenko Y, Tan J N, Gillaspy J D and Pomeroy J M 2006 Phys. Rev. A 74 042514
[10] Putterich T, Neu R, Dux R, Whiteford A D, O'Mullane M G and the ASDEX Upgrade Team 2008 Plasma Phys. Control Fusion 50 085016
[11] Neu R, Dux R, Kallenbach A, Putterich T, Balden M, Fuchs J C, Herrmann A, Maggi C F, O'Mullane M, Pugno R, Radivojevic I, Rohde V, Sips A C C, Sutterop W, Whiteford A and the ASDEX Upgrade team 2005 Nucl. Fusion 45 209
[12] Vichev I Y, Novikov V G and Solomyannaya A D 2009 Math. Models Comput. Simul. 1 470
[13] Li Y Q, Wu J H and Yuan J M 2008 Acta Phys. Sin. 57 4042 (in Chinese)
[14] Yu X M, Cheng S B, Yi Y G, Zhang J Y, Pu Y D, Zhao Y, Hu F, Yang J M and Zheng Z J 2011 Acta Phys. Sin. 60 085201 (in Chinese)
[15] Wang R R, Xiong J, Wang W, An H H, Fang Z H and Jia G 2012 Acta Phys. Sin. 61 242901 (in Chinese)
[16] Ma W, Jin F T and Yuan J M 2007 Acta Phys. Sin. 56 5709 (in Chinese)
[17] Jin F T, Zeng J L and Yuan J M 2004 Chin. J. Comput. Phys. 21 121
[18] Han X Y, Xu Y, Wu Z Q and Yan J 2010 High Power Laser Part. Beams 22 1157
[19] Zhang H, Zhang J Y, Yang X D, Yang G H and Zheng Z J 2003 Chin. Phys. Lett. 20 1474
[20] Zhang H, Cheng X L, Yang X D, Xie F J, Zhang J Y and Yang G H 2003 Acta Phys. Sin. 52 3098 (in Chinese)
[21] Cheng X L, Yang L and Zhang H 2002 Chin. Phys. Lett. 19 931
[22] Cowan RD 1981 The Theory of Atomic Structure and Spectra (Berkeley: University of California Press)
[23] Zhang J Y, Yang X D, Yang G H, Zhang B H, Lei A L, Liu H J and Li J 2001 Chin. Phys. 10 0809
[24] Bauche-Arnoult C, Bauche J and Klapisch M 1985 Phys. Rev. A 31 2248
[25] Li J, Xie W P, Huang X B, Yang L B, Cai H C and Pu Y K 2010 Acta Phys. Sin. 59 7922 (in Chinese)
[26] Jiao R Z, Cheng X L, Yang X D and Zhu J 2002 Acta Phys. Sin. 51 1755 (in Chinese)
[27] Yi Y G, Zheng Z J, Yan J, Li P, Fang Q Y and Qiu Y B 2002 Acta Phys. Sin. 51 2740 (in Chinese)
[28] Gupta G P and Sinha B K 1995 J. Appl. Phys. 77 2287
[29] Wang T C and Wang Y Z 1986 Chin. J. At. Mol. Phys. 3 231
[30] Wang T C, Ji W G, Yao J and Zhang Z C 1986 Chin. J. At. Mol. Phys. 3 219
[31] Colombant D and Tonon G F 1973 J. Appl. Phys. 44 3524
[32] Zhang J and Gu P J 1987 Chin. J. Comput. Phys. 4 1
[33] Yi Y G, Zheng Z J, Yan J, Li P, Fang Q Y and Qiu Y B 2003 High Power Laser Part. Beams 15 145
[34] Peyrusse O 1999 J. Phys. B 32 683
[1] A fitting formula for electron-ion energy partition fraction of 3.54-MeV fusion alpha particles in hot dense deuterium-tritium plasmas
Yan-Ning Zhang(张艳宁), Zhi-Gang Wang(王志刚), Yong-Tao Zhao(赵永涛), and Bin He(何斌). Chin. Phys. B, 2021, 30(1): 015202.
[2] Electron capture in collisions of Li3+ ions with ground andexcited states of Li atoms
M X Ma(马茗萱), B H Kou(寇博珩), L Liu(刘玲), Y Wu(吴勇), J G Wang(王建国). Chin. Phys. B, 2020, 29(1): 013401.
[3] Phase shift effects of radio-frequency bias on ion energy distribution in continuous wave and pulse modulated inductively coupled plasmas
Chan Xue(薛婵), Fei Gao(高飞), Yong-Xin Liu(刘永新), Jia Liu(刘佳), You-Nian Wang(王友年). Chin. Phys. B, 2018, 27(4): 045202.
[4] Plasma-screening effects on positronium formation
Jia Ma(马佳), Yuan-Cheng Wang(王远成), Ya-Jun Zhou(周雅君), Heng Wang(王珩). Chin. Phys. B, 2018, 27(1): 013401.
[5] Variation of passivation behavior induced by sputtered energetic particles and thermal annealing for ITO/SiOx/Si system
Ming Gao(高明), Hui-Wei Du(杜汇伟), Jie Yang(杨洁), Lei Zhao(赵磊), Jing Xu(徐静), Zhong-Quan Ma(马忠权). Chin. Phys. B, 2017, 26(4): 045201.
[6] Study of hysteresis behavior in reactive sputtering of cylindrical magnetron plasma
H. Kakati, S. M. Borah. Chin. Phys. B, 2015, 24(12): 125201.
[7] Single source emission of proton projectile fragments in nucleus-emulsion interactions
Zhang Dong-Hai, Li Jun-Sheng, Li Hui-Ling. Chin. Phys. B, 2012, 21(11): 110501.
[8] Cross sections of Oq+(q=1 - 4) electron loss in collisions with He, Ne and Ar
Lu Yan-Xia, Lu Xing-Qiang, Song Xiang, Zhang Bo-Li. Chin. Phys. B, 2011, 20(3): 033402.
[9] Emission spectra simulation of calcium plasmas in non-local thermodynamic equilibrium
Liang Gui-Yun, Bian Xia, Zhao Gang. Chin. Phys. B, 2004, 13(6): 891-897.
Zhang Lian-zhu, Yu Wei, Wang Jiu-li, Han Li, Fu Guang-sheng. Chin. Phys. B, 2001, 10(7): 639-644.
[11] Bootstrap current fraction scaling for spherical torus plasmas
Shi Bing-Ren. Chin. Phys. B, 2004, 13(12): 2097-2104.
[12] The dielectronic recombination process in laser-produced Au plasmas
Jiao Rong-Zhen, Cheng Xin-Lu, Yang Xiang-Dong. Chin. Phys. B, 2003, 12(10): 1140-1142.
[13] Poloidal rotation of main ions in the CT-6B tokamak
Feng Chun-Hua, Li Zan-Liang, Yang Xuan-Zong, Zheng Shao-Bai, Li Wen-Lai, Wang Long. Chin. Phys. B, 2003, 12(10): 1135-1139.
WU HAN-MIN, SHAO FU-QIU, WANG LONG, YAO XIN-ZI. Chin. Phys. B, 1996, 5(9): 677-691.
WEI HE-LIN, LIU ZU-LI, LI ZAI-GUANG, ZHENG QI-GUANG. Chin. Phys. B, 1996, 5(7): 520-529.
No Suggested Reading articles found!