Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(12): 120505    DOI: 10.1088/1674-1056/22/12/120505
GENERAL Prev   Next  

Modified projective synchronization with complex scaling factors of uncertain real chaos and complex chaos

Zhang Fang-Fang, Liu Shu-Tang, Yu Wei-Yong
College of Control Science and Engineering, Shandong University, Jinan 250061, China
Abstract  To increase the variety and security of communication, we present the definitions of modified projective synchronization with complex scaling factors (CMPS) of real chaotic systems and complex chaotic systems, where complex scaling factors establish a link between real chaos and complex chaos. Considering all situations of unknown parameters and pseudo-gradient condition, we design adaptive CMPS schemes based on the speed-gradient method for the real drive chaotic system and complex response chaotic system and for the complex drive chaotic system and the real response chaotic system, respectively. The convergence factors and dynamical control strength are added to regulate the convergence speed and increase robustness. Numerical simulations verify the feasibility and effectiveness of the presented schemes.
Keywords:  modified projective synchronization      complex scaling factors      complex chaotic systems      speed-gradient method  
Received:  19 February 2013      Revised:  23 April 2013      Published:  25 October 2013
PACS:  05.45.Gg (Control of chaos, applications of chaos)  
  05.45.Xt (Synchronization; coupled oscillators)  
  05.45.Pq (Numerical simulations of chaotic systems)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61273088, 10971120, and 61001099) and the Natural Science Foundation of Shandong Province, China (Grant No. ZR2010FM010).
Corresponding Authors:  Zhang Fang-Fang     E-mail:  zhff4u@163.com

Cite this article: 

Zhang Fang-Fang, Liu Shu-Tang, Yu Wei-Yong Modified projective synchronization with complex scaling factors of uncertain real chaos and complex chaos 2013 Chin. Phys. B 22 120505

[1] Pecora L M and Carroll T L 1990 Phys. Rev. Lett. 64 821
[2] Yang D S, Liu Z W, Zhao Y and Liu Z B 2012 Chin. Phys. B 21 040503
[3] Wang X Y, Zhang N, Ren X L and Zhang Y L 2011 Chin. Phys. B 20 020507
[4] Wu D and Li J J 2010 Chin. Phys. B 19 120505
[5] Feki M, Robert B, Gelle G and Colas M 2003 Chaos, Solitions and Fractals 18 881
[6] Fowler A C and Gibbon J D 1982 Physica D 4 139
[7] Mahmoud G M and Bountis T 2004 Int. J. Bifur. Chaos 14 3821
[8] Mahmoud G M, Bountis T and Mahmoud E E 2007 Int. J. Bifur. Chaos 17 4295
[9] Li Z G and Xu D L 2004 Chaos, Solitions and Fractals 22 477
[10] Mahmoud G M and Mahmoud E E 2010 Nonlinear Dyn. 61 141
[11] Mahmoud G M and Mahmoud E E 2010 Nonlinear Dyn. 62 875
[12] Liu S T and Liu P 2011 Nonlinear Anal.-Real 12 3046
[13] Liu P and Liu S T 2011 Phys. Scr. 83 065006
[14] Mahmoud G M and Mahmoud E E 2012 Nonlinear Dyn. 67 1613
[15] Liu P, Liu S T and Li X 2012 Phys. Scr. 85 035005
[16] Hu M, Yang Y Q, Xu Z Y and Guo L X 2008 Math. Comput. Simul. 79 449
[17] Mahmoud G M and Mahmoud E E 2010 Math. Comput. Simul. 80 2286
[18] Liu P and Liu S 2012 Nonlinear Dyn. 70 585
[19] Hu M, Xu Z and Zhang R 2008 Commun. Nonlinear Sci. Numer. Simul. 13 456
[20] Hu M, Xu Z and Zhang R 2008 Commun. Nonlinear Sci. Numer. Simul. 13 782
[21] Chee C Y and Xu D 2005 Chaos, Solitions and Fractals 23 1063
[22] Fradkov A L and Pogromsky A Y 1996 IEEE Trans. Circ. Syst. I 43 907
[23] Li N, Li J F and Liu Y P 2011 Acta Phys. Sin. 60 050507 (in Chinese)
[24] Zhao L D, Hu J B and Liu X H 2010 Acta Phys. Sin. 59 2305 (in Chinese)
[25] Hu J B, Han Y and Zhao L D 2009 Acta Phys. Sin. 58 1441 (in Chinese)
[26] Huang D 2005 Phys. Rev. E 71 037203
[27] Chen S H, Hua J, Wang C P and Lü J H 2004 Phys. Lett. A 321 50
[28] Mahmoud E E 2005 Math. Comput. Model. 55 1951
[1] Robust modified projective synchronization of fractional-order chaotic systems with parameters perturbation and external disturbance
Wang Dong-Feng, Zhang Jin-Ying, Wang Xiao-Yan. Chin. Phys. B, 2013, 22(10): 100504.
[2] Modified projective synchronization of a fractional-order hyperchaotic system with a single driving variable
Wang Xing-Yuan, Zhang Yong-Lei. Chin. Phys. B, 2011, 20(10): 100506.
No Suggested Reading articles found!