Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(7): 070208    DOI: 10.1088/1674-1056/21/7/070208
GENERAL Prev   Next  

Symmetry of Lagrangians of holonomic nonconservative system in event space

Zhang Bin, Fang Jian-Hui, Zhang Wei-Wei
College of Science, China University of Petroleum (East China), Qingdao 266580, China
Abstract  This paper analyzes the symmetry of Lagrangians and the conserved quantity for the holonomic non-conservative system in the event space. The criterion and the definition of the symmetry are proposed first, then a quantity caused by the symmetry and its existence condition are given. An example is shown to illustrate the application of the result in the end.
Keywords:  symmetry of Lagrangians      event space      holonomic nonconservative system      conserved quantity     
Received:  20 December 2011      Published:  01 June 2012
PACS:  02.40.-k (Geometry, differential geometry, and topology)  
  11.30.-j (Symmetry and conservation laws)  
  11.10.Ef (Lagrangian and Hamiltonian approach)  
Fund: Project supported by the Fundamental Research Funds for the Central Universities, China (Grant No. 09CX04018A), the Natural Science Foundation of Shandong Province, China (Grant No. ZR2011AM012), and the Postgraduate's Innovation Foundation of China University of Petroleum (East China) (Grant No. CXYB11-12).
Corresponding Authors:  Fang Jian-Hui     E-mail:  fangjh@upc.edu.cn

Cite this article: 

Zhang Bin, Fang Jian-Hui, Zhang Wei-Wei Symmetry of Lagrangians of holonomic nonconservative system in event space 2012 Chin. Phys. B 21 070208

[1] Guo Y X, Shang M and Luo S K 2003 Appl. Math. Mech. 24 68
[2] Mei F X, Xu X J and Zhang Y F 2004 Acta Mech. Sin. 20 668 (in Chinese)
[3] Mei F X 2004 Symmetries and Conserved Quantities of Constrained Mechanical Systems (Beijing: Beijing Institute of Technology Press) (in Chinese)
[4] Fang J H, Chen P S and Zhang J 2005 Appl. Math. Mech. 26 204
[5] Cai J L 2008 Chin. Phys. Lett. 25 1523
[6] Fu J L, Wang X J and Xie F P 2008 Chin. Phys. Lett. 25 2413
[7] Synge J L 1960 Classical Dynamics (Berlin: Springer)
[8] Rumyantsev V V 1983 Proceedings of the IUTAM-ISIMM Symposium on Modern Developments in Analytical Mechanics (Torino: Science Press)
[9] Mei F X 1990 Acta Mech. Sin. 6 160 (in Chinese)
[10] Mei F X 1999 Applications of Lie Groups and Lie Algebras to Constrained Mechanical Systems (Beijing: Science Press) (in Chinese)
[11] Luo S K 1991 J. Chengdu University (Natural Sci.) 10 30 (in Chinese )
[12] Li Y C, Zhang Y and Liang J H 2000 Appl. Math. Mech. 21 543
[13] Li Y C, Zhang Y and Liang J H 2001 Acta Mech. Solida Sin. 22 75 (in Chinese )
[14] Zhang Y 2007 Acta Phys. Sin. 56 655 (in Chinese)
[15] Currie D G and Saletan E J 1966 J. Math. Phys. 7 967
[16] Hojman S and Harleston H 1981 J. Math. Phys. 22 1414
[17] Zhao Y Y and Mei F X 1999 Symmetries and Invaiants of Mechanical Systems (Beijing: Science Press) (in Chinese)
[18] Mei F X, Gang T Q and Xie J F 2006 Chin. Phys. 15 1678
[19] Mei F X and Wu H B 2008 Phys. Lett. A 372 2141
[20] Mei F X and Wu H B 2009 Acta Phys. Sin. 58 5919 (in Chinese)
[21] Wu H B and Mei F X 2009 Chin. Phys. B 18 3145
[22] Zhang Y and Ge W K 2009 Acta Phys. Sin. 58 7447 (in Chinese)
[23] Wu H B and Mei F X 2010 Chin. Phys. B 19 030303
[24] Xia L L and Cai J L 2010 Chin. Phys. Lett. 27 080201
[1] Noether symmetry and conserved quantity for dynamical system with non-standard Lagrangians on time scales
Jing Song(宋静), Yi Zhang(张毅). Chin. Phys. B, 2017, 26(8): 084501.
[2] Non-Noether symmetries of Hamiltonian systems withconformable fractional derivatives
Lin-Li Wang (王琳莉) and Jing-Li Fu(傅景礼). Chin. Phys. B, 2016, 25(1): 014501.
[3] Symmetries and variational calculationof discrete Hamiltonian systems
Xia Li-Li, Chen Li-Qun, Fu Jing-Li, Wu Jing-He. Chin. Phys. B, 2014, 23(7): 070201.
[4] Noether symmetry and conserved quantity for a Hamilton system with time delay
Jin Shi-Xin, Zhang Yi. Chin. Phys. B, 2014, 23(5): 054501.
[5] Noether's theorems of a fractional Birkhoffian system within Riemann–Liouville derivatives
Zhou Yan, Zhang Yi. Chin. Phys. B, 2014, 23(12): 124502.
[6] Lie symmetry theorem of fractional nonholonomic systems
Sun Yi, Chen Ben-Yong, Fu Jing-Li. Chin. Phys. B, 2014, 23(11): 110201.
[7] Higher-order differential variational principle and differential equations of motion for mechanical systems in event space
Zhang Xiang-Wu, Li Yuan-Yuan, Zhao Xiao-Xia, Luo Wen-Feng. Chin. Phys. B, 2014, 23(10): 104501.
[8] Conformal invariance, Noether symmetry, Lie symmetry and conserved quantities of Hamilton systems
Chen Rong, Xu Xue-Jun. Chin. Phys. B, 2012, 21(9): 094501.
[9] A type of conserved quantity of Mei symmetry of Nielsen equations for a holonomic system
Cui Jin-Chao, Han Yue-Lin, Jia Li-Qun. Chin. Phys. B, 2012, 21(8): 080201.
[10] Noether conserved quantities and Lie point symmetries for difference nonholonomic Hamiltonian systems in irregular lattices
Xia Li-Li, Chen Li-Qun. Chin. Phys. B, 2012, 21(7): 070202.
[11] Form invariance and approximate conserved quantity of Appell equations for a weakly nonholonomic system
Jia Li-Qun, Zhang Mei-Ling, Wang Xiao-Xiao, Han Yue-Lin. Chin. Phys. B, 2012, 21(7): 070204.
[12] Symmetry of Lagrangians of a holonomic variable mass system
Wu Hui-Bin, Mei Feng-Xiang. Chin. Phys. B, 2012, 21(6): 064501.
[13] Mei symmetry and Mei conserved quantity of the Appell equation in a dynamical system of relative motion with non-Chetaev nonholonomic constraints
Wang Xiao-Xiao,Sun Xian-Ting,Zhang Mei-Ling,Han Yue-Lin,Jia Li-Qun. Chin. Phys. B, 2012, 21(5): 050201.
[14] Mei conserved quantity directly induced by Lie symmetry in a nonconservative Hamilton system
Fang Jian-Hui,Zhang Bin,Zhang Wei-Wei,Xu Rui-Li. Chin. Phys. B, 2012, 21(5): 050202.
[15] Lie symmetries and conserved quantities of discrete nonholonomic Hamiltonian systems
Wang Xing-Zhong,Fu Hao,Fu Jing-Li. Chin. Phys. B, 2012, 21(4): 040201.
No Suggested Reading articles found!