Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(4): 040303    DOI: 10.1088/1674-1056/21/4/040303
GENERAL Prev   Next  

Rotational symmetry of classical orbits, arbitrary quantization of angular momentum and the role of the gauge field in two-dimensional space

Xin Jun-Li(辛俊丽)a)b) and Liang Jiu-Qing(梁九卿)a)
a. Institute of Theoretical Physics, Shanxi University, Taiyuan 030006, China;
b. Department of Physics and Electronic Engineering, Yuncheng College, Yuncheng 044000, China
Abstract  We study quantum-classical correspondence in terms of the coherent wave functions of a charged particle in two-dimensional central-scalar potentials as well as the gauge field of a magnetic flux in the sense that the probability clouds of wave functions are well localized on classical orbits. For both closed and open classical orbits, the non-integer angular-momentum quantization with the level space of angular momentum being greater or less than  is determined uniquely by the same rotational symmetry of classical orbits and probability clouds of coherent wave functions, which is not necessarily 2π-periodic. The gauge potential of a magnetic flux impenetrable to the particle cannot change the quantization rule but is able to shift the spectrum of canonical angular momentum by a flux-dependent value, which results in a common topological phase for all wave functions in the given model. The well-known quantum mechanical anyon model becomes a special case of the arbitrary quantization, where the classical orbits are 2π-periodic.
Keywords:  quantum-classical correspondence      anyon      rotational symmetry      arbitrary quantization of angular momentum  
Received:  22 June 2011      Revised:  10 October 2011      Accepted manuscript online: 
PACS:  03.65.Vf (Phases: geometric; dynamic or topological)  
  05.30.Pr (Fractional statistics systems)  
  45.20.df (Momentum conservation)  
  03.65.Ge (Solutions of wave equations: bound states)  
Fund: Project supported by the National Natural Science Foundation of China(Grant No.11075099)
Corresponding Authors:  Xin Jun-Li, E-mail:xinjunliycu@163.com     E-mail:  xinjunliycu@163.com

Cite this article: 

Xin Jun-Li(辛俊丽) and Liang Jiu-Qing(梁九卿) Rotational symmetry of classical orbits, arbitrary quantization of angular momentum and the role of the gauge field in two-dimensional space 2012 Chin. Phys. B 21 040303

[1] Makowski A J and Gorska K J 2007 J. Phys. A: Math. Theor. 40 11373
[2] Makowski A J and Gorska K J 2007 Phys. Lett. A 362 26
[3] Wilczek F 1982 Phys. Rev. Lett. 48 1144
[4] Wilczek F 1982 Phys. Rev. Lett. 49 957
[5] Plyushchay M S 1990 Phys. Lett. B 17 107
[6] Cortes J L and Plyushchay M S 1996 Int. J. Mod. Phys. A 11 3331
[7] Correa F and Plyushchay M S 2007 Ann. Phys. 322 2493
[8] Correa F, Falomir H, Jakubsky V and Plyushchay M S 2010 J. Phys. A: Math. Theor. 43 075202
[9] Correa F, Falomir H, Jakubsky V and Plyushchay M S 2010 Ann. Phys. 325 2653
[10] Jakubsky V, Nieto Luis-Miguel and Plyushchay M S 2010 Phys. Lett. B 692 51
[11] Horvathy P A, Plyushchay M S and Valenzuela M 2010 Ann. Phys. 325 1931
[12] Ding X X and Liang J Q 1988 Acta Phys. Sin. 37 1752 (in Chinese)
[13] Silverman M 1983 Phys. Rev. Lett. 17 1927
[14] Hamermesh M 1962 Group Theory and Its Applications to Physical Problems (Reading MA: Addison Wesley Publishing Company)
[15] Liang J Q 1984 Phys. Rev. Lett. 53 859
[16] Schulman L 1968 Phys. Rev. A 176 1558
[17] Jackiw R and Redlich A M 1983 Phys. Rev. Lett. 50 555
[18] Liang J Q and Ding X X 1987 Phys. Rev. A 36 4149
[19] Makowski A J 2002 Phys. Rev. A 65 32103
[20] Makowski A J and Gorska K J 2002 Phys. Rev. A 66 062103
[21] Wang H, Wang X T, Gould P L and Stwalley W C 1997 Phys. Rev. Lett. 78 4173
[22] Makowski A J 2003 Phys. Rev. A 68 22102
[23] Kobayashi T 2002 Physica A 303 469
[24] Nowakowski M and Rosu H C 2002 Phys. Rev. E 65 047602
[25] Makowski A J 2005 J. Phys. A: Math. Gen. 17 2299
[26] Daboul J and Nieto M M 1995 Phys. Rev. E 52 4430
[27] Makowski A J 2010 Ann. Phys. 325 1622
[28] Daboul J and Nieto M M 1996 Int. J. Mod. Phys. A 11 3801
[29] Daboul J and Nieto M M 1994 Phys. Lett. A 190 357
[30] Watson G N 1952 Theory of Bessel Function (Lodon: Cambrige University Press)
[31] Klauder J R and Skagerstam Bo-Sture 1986 Coherehent States-Applications in Physics and Mathematical Physics (Singapore: World Scientific)
[32] Tian L J, Zhu C Q, Zhang H B and Qin L G 2011 Chin. Phys. B 20 040302
[33] Lai Y Z and Liang J Q 1996 Acta Phys. Sin. 45 738 (in Chinese)
[34] Leinaas J M and Myrheim J 1988 Phys. Rev. B 37 9286
[35] He Y J, Fab H H, Dong J W and Wang H Z 2006 Phys. Rev. E 74 016611
[36] Desyatnikov A S and Kivshar Y S 2001 Phys. Rev. Lett. 87 033901
[37] Goryo J 2000 Phys. Rev. B 31 4222
[38] Gongora T A, Jose J V, Schaffner S and Tiesinga P H E 2000 Phys. Lett. A 274 117
[1] Entanglement spectrum of non-Abelian anyons
Ying-Hai Wu(吴英海). Chin. Phys. B, 2022, 31(3): 037302.
[2] Simulation of anyons by cold atoms with induced electric dipole moment
Jian Jing(荆坚), Yao-Yao Ma(马瑶瑶), Qiu-Yue Zhang(张秋月), Qing Wang(王青), Shi-Hai Dong(董世海). Chin. Phys. B, 2020, 29(8): 080303.
[3] Chaotic dynamics of complex trajectory and its quantum signature
Wen-Lei Zhao(赵文垒), Pengkai Gong(巩膨恺), Jiaozi Wang(王骄子), and Qian Wang(王骞). Chin. Phys. B, 2020, 29(12): 120302.
[4] Entangled multi-knot lattice model of anyon current
Tieyan Si(司铁岩). Chin. Phys. B, 2019, 28(4): 040501.
No Suggested Reading articles found!