Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(2): 020503    DOI: 10.1088/1674-1056/21/2/020503
GENERAL Prev   Next  

Bifurcations and chaotic threshold for a nonlinear system with an irrational restoring force

Tian Rui-Lan(田瑞兰)a), Yang Xin-Wei(杨新伟) b), Cao Qing-Jie(曹庆杰)c)†, and Wu Qi-Liang(吴启亮)a)
a. Department of Mathematics and Physics, Shijiazhuang Tiedao University, Shijiazhuang 050043, China;
b. School of Traffic, Shijiazhuang Institute of Railway Technology, Shijiazhuang 050041, China;
c. School of Astronautics, Harbin Institute of Technology, Harbin 150001, China
Abstract  Nonlinear dynamical systems with an irrational restoring force often occur in both science and engineering, and always lead to a barrier for conventional nonlinear techniques. In this paper, we have investigated the global bifurcations and the chaos directly for a nonlinear system with irrational nonlinearity avoiding the conventional Taylor's expansion to retain the natural characteristics of the system. A series of transformations are proposed to convert the homoclinic orbits of the unperturbed system to the heteroclinic orbits in the new coordinate, which can be transformed back to the analytical expressions of the homoclinic orbits. Melnikov's method is employed to obtain the criteria for chaotic motion, which implies that the existence of homoclinic orbits to chaos arose from the breaking of homoclinic orbits under the perturbation of damping and external forcing. The efficiency of the criteria for chaotic motion obtained in this paper is verified via bifurcation diagrams, Lyapunov exponents, and numerical simulations. It is worthwhile noting that our study is an attempt to make a step toward the solution of the problem proposed by Cao Q J et al. (Cao Q J, Wiercigroch M, Pavlovskaia E E, Thompson J M T and Grebogi C 2008 Phil. Trans. R. Soc. A 366 635).
Keywords:  nonlinear dynamical system      Melnikov boundary      irrational restoring force      saddle-like singularity      homoclinic-like orbit  
Received:  30 August 2011      Revised:  02 October 2011      Accepted manuscript online: 
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
  05.45.Ac (Low-dimensional chaos)  
  82.40.Bj (Oscillations, chaos, and bifurcations)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11002093, 11072065, and 10872136) and the Science Foundation of the Science and Technology Department of Hebei Province of China (Grant No. 11215643).
Corresponding Authors:  Cao Qing-Jie,caoqingjie@hotmail.com     E-mail:  caoqingjie@hotmail.com

Cite this article: 

Tian Rui-Lan(田瑞兰), Yang Xin-Wei(杨新伟), Cao Qing-Jie(曹庆杰), and Wu Qi-Liang(吴启亮) Bifurcations and chaotic threshold for a nonlinear system with an irrational restoring force 2012 Chin. Phys. B 21 020503

[1] Cao Q J, Wiercigroch M, Pavlovskaia E E, Thompson J M T and Grebogi C 2008 Phil. Trans. R. Soc. A 366 635
[2] Lai S K and Xiang Y 2010 Comput. Math. Appl. 60 2078
[3] Tufillaro N B, Abbott T and Reilly J 1992 An Experimental Approach to Nonlinear Dynamics and Chaos (Boston: Addison-Wesley)
[4] Gimeno E, Álvarez M L, Yebra M S J, Herranz Rosa and Bel閚dez A 2009 Int. J. Nonlinear Sci. Numer. Simul. 10 493
[5] Mickens R E 1996 Oscillations in Planar Dynamic Systems (Singapore: World Scientific)
[6] Sun W P, Wu B S and Lim C W 2007 J. Sound Vib. 300 1042
[7] Cao Q J, Xiong Y P and Wiercigroch M 2011 J. Appl. Anal. Comput. 1 183
[8] Cao Q J, Wiercigroch M, Pavlovskaia E E, Grebogi C and Thompson J M T 2006 Phys. Rev. E 74 046218
[9] Cao Q J, Wiercigroch M, Pavlovskaia E E, Grebogi C and Thompson J M T 2008 Int. J. Nonlinear Mech. 43 462
[10] Tian R L, Cao Q J and Yang S P 2010 Nonlinear Dyn. 59 19
[11] Gatti G, Kovacic I and Brennan M J 2010 J. Sound Vib. 329 1823
[12] Gatti G, Brennan M J and Kovacic Ivana 2010 Physica D 239 591
[13] Beléndez A, Hernández A, Beléndez T, Álvarez M L, Gallego S, Ortuño M and Neipp C 2007 J. Sound Vib. 302 1018
[14] Beléndez A, Beléndez T, Neipp C, Hernández A and Álvarez M L 2009 it Chaos, Solitons and Fractals 39 746
[15] Tian R L, Cao Q J and Li Z X 2010 Chin. Phys. Lett. 27 074701
[16] Wiggins S 1983 Introduction to Applied Nonlinear Dynamical Systems and Chaos (New York: Springer)
[17] Liu W 1994 J. Math. Anal. Appl. 182 250
[18] Yu W Q and Chen F Q 2010 Nonlinear Dyn. 59 129
[19] Samoylenko S B and Lee W K 2007 Nonlinear Dyn. 47 405
[20] Zhang Y and Bi Q S 2011 Chin. Phys. B 20 010504
[21] Wang W, Zhang Q C and Tian R L 2010 Chin. Phys. B 19 030517
[22] Zhang Q C, Tian R L and Wang W 2008 Acta Phys. Sin. 57 2799 (in Chinese)
[23] Yao M H and Zhang W 2005 Int. J. Bifur. Chaos 15 3923
[24] Jiang G R, Xu B G and Yang Q G 2009 Chin. Phys. B 18 5235
[25] Liang C X and Tang J S 2008 Chin. Phys. B 17 135
[26] Melnikov V K 1963 Trans. Moscow Math. Soc. 12 1
[27] Guckenheimer J and Holmes P 1983 Nonlinear Oscillation, Dynamical Systems, and Bifurcation of Vector Fields (New York: Springer)
[28] Chen Y S and Leung A Y T 1998 Bifurcation and Chaos in Engineering (London: Springer)
[1] Chaos and chaotic control in a relative rotation nonlinear dynamical system under parametric excitation
Shi Pei-Ming(时培明), Han Dong-Ying(韩东颖), and Liu Bin(刘彬). Chin. Phys. B, 2010, 19(9): 090306.
[2] FREQUENCY CATASTROPHE AND CO-EXISTING ATTRACTORS IN A CELL Ca2+ NONLINEAR OSCILLATION MODEL WITH TIME DELAY
Ying Yang-jun (应阳君), Huang Zu-qia (黄祖洽). Chin. Phys. B, 2001, 10(10): 907-913.
No Suggested Reading articles found!