Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(4): 040205    DOI: 10.1088/1674-1056/20/4/040205
GENERAL Prev   Next  

Poor–rich demarcation of Matthew effect on scale-free systems and its application

Yan Dong(闫栋)a)†, Dong Ming(董明)b), Abdelaziz Bourasc), and Yu Sui-Ran(于随然) a)
a School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; b College of Economics & Management, Shanghai Jiao Tong University, Shanghai 200052, China; c IUT Lumiμere Technology Institute, Université Lumière Lyon 2, Lyon 69007, France
Abstract  In a scale-free network, only a minority of nodes are connected very often, while the majority of nodes are connected rarely. However, what is the ratio of minority nodes to majority nodes resulting from the Matthew effect? In this paper, based on a simple preferential random model, the poor-rich demarcation points are found to vary in a limited range, and form a poor-rich demarcation interval that approximates to k/m ∈ [3,4]. As a result, the (cumulative) degree distribution of a scale-free network can be divided into three intervals: the poor interval, the demarcation interval and the rich interval. The inequality of the degree distribution in each interval is measured. Finally, the Matthew effect is applied to the ABC analysis of project management.
Keywords:  Matthew effect      scale-free networks      poor--rich demarcation      project management  
Received:  22 April 2010      Revised:  01 December 2010      Accepted manuscript online: 
PACS:  02.50.-r (Probability theory, stochastic processes, and statistics)  
  05.65.+b (Self-organized systems)  
  89.75.Fb (Structures and organization in complex systems)  
Fund: Project supported by the "Shu Guang" Project of Shanghai Municipal Education Commission, China (Grant No. 09SG17), and EU ELINK–East–West Link for Innovation, Networking and Knowledge Exchange (Grant No. 149674-EM-1-2008-1-UK-ERAMUNDUS).

Cite this article: 

Yan Dong(闫栋), Dong Ming(董明), Abdelaziz Bouras, and Yu Sui-Ran(于随然) Poor–rich demarcation of Matthew effect on scale-free systems and its application 2011 Chin. Phys. B 20 040205

[1] Merton R K 1968 Science 159 56
[2] Price D J de S 1965 Science 149 510
[3] Barabási A L and Albert R 1999 Science 286 509
[4] Hu H B and Wang X F 2008 Physica A 387 3769
[5] Wu J, Tan Y J, Deng H Z and Zhu D Z 2007 Chin. Phys. 16 1576
[6] Newman M E J 2003 SIAM Rev. 45 167
[7] Myers C R 2003 Phys. Rev. E 68 046116
[8] Zhao W, He H S, Lin Z C and Yang K Q 2006 Acta Phys. Sin. 55 3906 (in Chinese)
[9] Wang G Z, Cao Y J, Bao Z J and Han Z X 2009 Acta Phys. Sin. 58 3597 (in Chinese)
[10] Concas G, Marchesi M, Pinna S and Serra N 2007 IEEE Trans. Software Eng. 33 687
[11] Yan D, Qi G N and Gu X J 2006 Chin. Phys. 15 2489
[12] Valverde S, Cancho1 R F and Solé R V 2002 Europhys. Lett. 60 512
[13] Barabási A L, Albert R and Jeong H 1999 Physica A 272 173
[14] Santos F C, Rodrigues J F and Pacheco J M 2006 Proc. R. Soc. B 273 51
[15] Qi G N, Schottner J (Germany), Gu X J and Han Y S 2005 The Graphic Product Data Management (Beijing: China Machine Press) p. 133 (in Chinese) endfootnotesize
[1] Finite density scaling laws of condensation phase transition in zero-range processes on scale-free networks
Guifeng Su(苏桂锋), Xiaowen Li(李晓温), Xiaobing Zhang(张小兵), Yi Zhang(张一). Chin. Phys. B, 2020, 29(8): 088904.
[2] Multiple-predators-based capture process on complex networks
Rajput Ramiz Sharafat, Cunlai Pu(濮存来), Jie Li(李杰), Rongbin Chen(陈荣斌), Zhongqi Xu(许忠奇). Chin. Phys. B, 2017, 26(3): 038901.
[3] Symmetry breaking in the opinion dynamics of a multi-group project organization
Zhu Zhen-Tao (朱振涛), Zhou Jing (周晶), Li Ping (李平), Chen Xing-Guang (陈星光). Chin. Phys. B, 2012, 21(10): 100503.
[4] Integrated systemic inflammatory response syndrome epidemic model in scale-free networks
Cai Shao-Hong(蔡绍洪), Zhang Da-Min(张达敏), Gong Guang-Wu(龚光武), and Guo Chang-Rui(郭长睿) . Chin. Phys. B, 2011, 20(9): 090503.
[5] Generalized minimum information path routing strategy on scale-free networks
Zhou Si-Yuan(周思源), Wang Kai(王开), Zhang Yi-Feng(张毅锋) Pei Wen-Jiang(裴文江) Pu Cun-Lai(濮存来), and Li Wei(李微) . Chin. Phys. B, 2011, 20(8): 080501.
[6] Degree and connectivity of the Internet's scale-free topology
Zhang Lian-Ming(张连明), Deng Xiao-Heng(邓晓衡), Yu Jian-Ping(余建平), and Wu Xiang-Sheng(伍祥生) . Chin. Phys. B, 2011, 20(4): 048902.
[7] Mobile user forecast and power-law acceleration invariance of scale-free networks
Guo Jin-Li(郭进利), Guo Zhao-Hua(郭曌华), and Liu Xue-Jiao(刘雪娇) . Chin. Phys. B, 2011, 20(11): 118902.
[8] Adaptive local routing strategy on a scale-free network
Liu Feng(刘锋) Zhao Han(赵寒), Li Ming(李明), Ren Feng-Yuan(任丰原), and Zhu Yan-Bo(朱衍波). Chin. Phys. B, 2010, 19(4): 040513.
[9] Convergence speed of consensus problems over undirected scale-free networks
Sun Wei(孙巍) and Dou Li-Hua(窦丽华). Chin. Phys. B, 2010, 19(12): 120513.
[10] Modelling the spread of sexually transmitted diseases on scale-free networks
Liu Mao-Xing(刘茂省) and Ruan Jiong(阮炯). Chin. Phys. B, 2009, 18(6): 2115-2120.
[11] Improving consensual performance of multi-agent systems in weighted scale-free networks
Qi Wei(祁伟), Xu Xin-Jian(许新建), and Wang Ying-Hai(汪映海). Chin. Phys. B, 2009, 18(10): 4217-4221.
[12] Normalized entropy of rank distribution: a novel measure of heterogeneity of complex networks
Wu Jun(吴俊), Tan Yue-Jin(谭跃进), Deng Hong-Zhong(邓宏钟), and Zhu Da-Zhi(朱大智). Chin. Phys. B, 2007, 16(6): 1576-1580.
No Suggested Reading articles found!