Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(6): 060302    DOI: 10.1088/1674-1056/19/6/060302
GENERAL Prev   Next  

Some exact solutions to the inhomogeneous higher-order nonlinear Schr?dinger equation by a direct method

Chen Yonga, ZhangHuan-Pingb, Li Biaob
a Institute of Theoretical Computing, East China Normal University, Shanghai 200062, China; b Nonlinear Science Center, Ningbo University, Ningbo 315211, China
Abstract  By symbolic computation and a direct method, this paper presents some exact analytical solutions of the one-dimensional generalized inhomogeneous higher-order nonlinear Schr?dinger equation with variable coefficients, which include bright solitons, dark solitons, combined solitary wave solutions, dromions, dispersion-managed solitons, etc. The abundant structure of these solutions are shown by some interesting figures with computer simulation.
Keywords:  inhomogeneous high-order nonlinear Schr?dinger equation      solitary wave solutions      symbolic computation  
Received:  09 October 2009      Published:  15 June 2010
PACS:  42.81.Dp (Propagation, scattering, and losses; solitons)  
  02.30.Jr (Partial differential equations)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No.~10735030), Natural Science Foundation of Zhejiang Province of China (Grant No.~Y6090592), Natural Science Foundation of Ningbo City (Grant No. 2008A610017) and K.C. Wong Ma

Cite this article: 

ZhangHuan-Ping, Li Biao, Chen Yong Some exact solutions to the inhomogeneous higher-order nonlinear Schr?dinger equation by a direct method 2010 Chin. Phys. B 19 060302

[1] Hasegawa A and Tappert F 1973 Appl. Phys. Lett. 23 142
[2] Mollenauer L F, Stolen R H and Gordon J P 1980 Phys. Rev. Lett. 45 1095
[3] Li B, Chen Y and Li Y Q 2008 Z. Naturforsch. 63a 763
[4] Yang R C, Hao R Y, Li L, Li Z H and Zhou G S 2004 Opt. Commun. 242 285
[5] Yang R C, Hao R Y, Li L, Li Z H and Zhou G S 2005 Phys. Rev. E 71 036616
[6] Tian B and Gao Y T 2005 Phys. Lett. A 342 228
[7] Li L, Li Z H, Xu Z Y, Zhou G S and Spatschek K H 2002 Phys. Rev. E 66 04661
[8] Kruglov V I, Peacock A C and Harvey J D 2003 Phys. Rev. Lett. 90 21
[9] Li Z H, Li L, Tian H P and Zhou G S 2000 Phys. Rev. Lett. 84 4096
[10] Li Z H, Li L, Tian H P, Zhou G S and Spatschek K H 2002 Phys. Rev. Lett. 89 263901
[11] Jia M, Wang J Y and Lou S Y 2009 Chin. Phys. Lett. 26 020201
[12] Li H M 2008 Chin. Phys. B 17 759
[13] He J C, Chen Z Y and Huang N N 2009 Acta Phys. Sin. 58 6063 (in Chinese)
[14] Li X Z, Zhang J L, Wang Y M and Wang M L 2004 Acta Phys. Sin. 53 4045 (in Chinese)
[15] Li H M, Li Y S and Lin J 2009 Chin. Phys. B 18 3657
[16] Lou S Y 1999 Chin. Phys. Lett. 16 659
[17] He J S, Ji M and Li Y S 2007 Chin. Phys. Lett. 24 2157
[18] Zhou R G 2007 Chin. Phys. Lett. 24 598
[19] Zdravkovic S and Sataric M V 2007 Chin. Phys. Lett. 24 1210
[20] Wang Y S, Li H Q and Song Y Z 2008 Chin. Phys. Lett. 25 1538
[21] Hong W P 2001 Opt. Commun. 194 217
[22] Li L, Li Z H, Xu Z Y, Zhou G S and Spatschek K H 2002 Phys. Rev. E 66 04661
[23] Li L, Li Z H, Li S Q and Zhou G S 2004 Opt. Commun. 234 169
[24] Li B 2005 Int. J. Mod. Phys. C 16 1225
[25] Li B and Chen Y 2006 Z. Naturforsch. 60a 768
[26] Li B, Zhang X F, Li Y Q, Chen Y and Liu W M 2008 Phys. Rev. A 78 023608
[27] Lou S Y, Huang G X and Ruan H Y 1991 J. Phys. A 24 L587
[28] Tan Y K, Wu H Y, Zhang L and Zhou X T 2008 Acta Phys. Sin. 57 3312 (in Chinese)
[29] Han J H, Shi L M, Wu G J, Zhang M and Zhang W L 2007 Acta Phys. Sin. 56 5054 (in Chinese)
[30] Li W A, Chen H and Zhang G C 2009 Chin. Phys. B 18 400
[31] Gao X Y, Hong X R, Wang C L and Duan W S 2008 Chin. Phys. B 17 3378
[32] Chen C L, Zhang J and Li Y S 2007 Chin. Phys. 16 2167
[33] Wu X F, Zhu J M and Ma Z Y 2007 Chin. Phys. 16 2159
[34] Ma H C, Deng A P and Qin Z Y 2009 Chin. Phys. Lett. 26 040201
[35] Li Z B and Liu Y P 2002 Comput. Phys. Commun. 148 256
[36] Fan E 2000 Phys. Lett. A 277 212
[37] Yan Z Y 2001 Phys. Lett. A 292 100
[38] Yan Z Y and Zhang H Q 2001 Phys. Lett. A 285 355
[39] Li B and Chen Y 2004 Chaos, Solitons and Fractals 21 241
[40] Li B 2004 Z. Naturforsch. 59a 919
[1] Localized characteristics of lump and interaction solutions to two extended Jimbo-Miwa equations
Yu-Hang Yin(尹宇航), Si-Jia Chen(陈思佳), and Xing Lü(吕兴). Chin. Phys. B, 2020, 29(12): 120502.
[2] Lump-type solutions of a generalized Kadomtsev-Petviashvili equation in (3+1)-dimensions
Xue-Ping Cheng(程雪苹), Wen-Xiu Ma(马文秀), Yun-Qing Yang(杨云青). Chin. Phys. B, 2019, 28(10): 100203.
[3] Exact transverse solitary and periodic wave solutions in a coupled nonlinear inductor-capacitor network
Serge Bruno Yamgoué, Guy Roger Deffo, Eric Tala-Tebue, François Beceau Pelap. Chin. Phys. B, 2018, 27(9): 096301.
[4] A novel (G’/G)-expansion method and its application to the Boussinesq equation
Md. Nur Alam, Md. Ali Akbar, Syed Tauseef Mohyud-Din. Chin. Phys. B, 2014, 23(2): 020203.
[5] Painlevé integrability of generalized fifth-order KdV equation with variable coefficients: Exact solutions and their interactions
Xu Gui-Qiong. Chin. Phys. B, 2013, 22(5): 050203.
[6] Extended symmetry transformation of (3+1)-dimensional generalized nonlinear Schrödinger equation with variable coefficients
Jing Jian-Chun, Li Biao. Chin. Phys. B, 2013, 22(1): 010303.
[7] Exact analytical solutions of three-dimensional Gross–Pitaevskii equation with time–space modulation
Hu Xiao, Li Biao. Chin. Phys. B, 2011, 20(5): 050315.
[8] Combined periodic wave and solitary wave solutions in two-component Bose–Einstein condensates
Yao Shu-Fang, Li Qiu-Yan, Li Zai-Dong. Chin. Phys. B, 2011, 20(11): 110307.
[9] Discrete doubly periodic and solitary wave solutions for the semi-discrete coupled mKdV equations
Wu Xiao-Fei, Zhu Jia-Min, Ma Zheng-Yi. Chin. Phys. B, 2007, 16(8): 2159-2166.
[10] New exact solitary wave solutions to generalized mKdV equation and generalized Zakharov--Kuzentsov equation
Taogetusang, Sirendaoreji. Chin. Phys. B, 2006, 15(6): 1143-1148.
[11] The pth-order periodic solutions for a family of N-coupled nonlinear SchrOdingerequations
Liu Guan-Ting. Chin. Phys. B, 2006, 15(11): 2500-2505.
[12] Applications of F-expansion method to the coupled KdV system
Li Bao-An, Wang Ming-Liang. Chin. Phys. B, 2005, 14(9): 1698-1706.
[13] New expansion algorithm of three Riccati equations and its applications in nonlinear mathematical physics equations
Zhi Hong-Yan, Zhao Xue-Qin, Zhang Hong-Qing. Chin. Phys. B, 2005, 14(7): 1296-1302.
[14] Periodic solutions of nonlinear Schr?dinger type equations
Fan Tian-You, Liu Guan-Ting. Chin. Phys. B, 2004, 13(6): 805-810.
[15] Travelling wave solutions for generalized symmetric regularized long-wave equations with high-order nonlinear terms
Li Biao, Chen Yong. Chin. Phys. B, 2004, 13(3): 302-306.
No Suggested Reading articles found!