Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(4): 047310    DOI: 10.1088/1674-1056/19/4/047310
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Pressure effect study on the IV property of the GaAs-based resonant tunnelling structure by photoluminescence measurement

Wang Kai-Quna, Jian Ao-Quna, Zhang Bin-Zhena, Li Qiu-Zhub, Liu Xinb
a Key Laboratory of Instrumentation Science and Dynamic Measurement (North University of China), Ministry of Education, Taiyuan {\rm 030051, China; b National Key Laboratory for Electronic Measurement Technology, North University of China, Taiyuan 030051, China
Abstract  This paper discusses the $I$--$V$ property of the GaAs-based resonant tunnelling structure (RTS) under external uniaxial pressure by photoluminescence studies. Compressive pressure parallel to the [110] direction, whose value is determined by Hooke's law, is imposed on the sample by a helix micrometer. With the increase of the applied external uniaxial compressive pressure, the blue shift and splitting of the luminescence peaks were observed, which have some influence on the $I$--$V$ curve of RTS from the point of view of the energy gap, and the splitting became more apparent with applied pressure. Full width at half maximum broadening could also be observed.
Keywords:  $I$--$V$ curve      photoluminescence measurement      peak shift      resonant tunnelling structure      peak split      full width at half maximum broadening     
Received:  29 July 2009      Published:  15 April 2010
PACS:  85.30.Mn (Junction breakdown and tunneling devices (including resonance tunneling devices))  
  85.30.Kk (Junction diodes)  
  78.55.Cr (III-V semiconductors)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos.~50775209 and 50730009).

Cite this article: 

Li Qiu-Zhu, Wang Kai-Qun, Jian Ao-Qun, Liu Xin, Zhang Bin-Zhen Pressure effect study on the IV property of the GaAs-based resonant tunnelling structure by photoluminescence measurement 2010 Chin. Phys. B 19 047310

[1] Eaton W P and Smith J H 1997 Smart Mater. Struct. 6 530
[2] Leclercq J L, Ribas R P, Karam J M and Viktorovitch P 1998 Microelectron. J. 29 613
[3] Lalinsk\'{y} T, Kuzmík J, Porges M, Ha\v{s}cík \v{S}, Mozolavá ? and Gr\v{n}o L 1995 Electron. Lett. 31 1914
[4] Hjort K 1996 J. Micromech. Microeng. 6 370
[5] Ukita H, Uenishi Y and Tanaka H 1993 Science 260 786
[6] Uenishi Y, Tanaka H and Ukita H 1995 Proceedings of the SPIE Symposium on Integrated Optics Microstructures II 2291 82
[7] Xiong J J, Mao H Y, Zhang W D and Wang K Q 2009 Chin. Phys. B 18] 1242
[8] Wacker A, Moscoso M, Kindelan M and Bonilla LL 1997 Phys. Rev. B 55 2466
[9] Wang J, Zhang W D, Xue C Y, Xiong J J, Liu J and Xie B 2007 Chin. Phys 16 1150
[10] Smaoui F, Maaref M and Planel R 1999 Microelectron. J. 30 631
[11] Constantino M E, Navarro-Contreras H, Ramírez-Flores G, Vidal M A, Lastras-Martínez A, Herna\'ndez-Caldero\'n I, de Melo O and Lo\'pez-Lo\'pez M 1998 Appl. Sur. Sci. 134 95
[12] Xue C Y 2003 Ph.D Thesis} Department of Physics, National Technical University of Athens, Athens, Greece p.61
[13] Adachi S 1985 J. Appl. Phys. 58 R1
[14] Cong L, Albrecht J D, Nathan M I and Ruden P P 1995 Appl. Phys. Lett. 66 1358
[15] Xu L P, Wen T D, Yang X F, Xue C Y, Xiong J J, Zhang W D, Wu M Z and Hochheimer H D 2008 Appl. Phys. Lett. 92 043508
[16] Mantz U, Steck B, Thonke K, Sauer R, Sch?ffler F and Herzog H J 1996 Appl. Sur. Sci. 102 314
[1] Design of electron wave filters in monolayer graphene with velocity modulations
Sun Li-Feng, Dong Li-Min, Fang Chao. Chin. Phys. B, 2013, 22(4): 047203.
No Suggested Reading articles found!