Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(3): 030510    DOI: 10.1088/1674-1056/19/3/030510
GENERAL Prev   Next  

Transient chaos in smooth memristor oscillator

Liu Zhonga, Bao Bo-Chengb, Xu Jian-Pingc
a Department of Electronic Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; b Department of Electronic Engineering, Nanjing University of Science and Technology, Nanjing 210094, China;School of Electrical and Information Engineering, Jiangsu Teachers University of Technology, Changzhou 213001, China; c School of Electrical Engineering, Southwest Jiaotong University, Chengdu 610031, China
Abstract  This paper presents a new smooth memristor oscillator, which is derived from Chua's oscillator by replacing Chua's diode with a flux-controlled memristor and a negative conductance. Novel parameters and initial conditions are dependent upon dynamical behaviours such as transient chaos and stable chaos with an intermittence period and are found in the smooth memristor oscillator. By using dynamical analysis approaches including time series, phase portraits and bifurcation diagrams, the dynamical behaviours of the proposed memristor oscillator are effectively investigated in this paper.
Keywords:  transient chaos      dynamical behaviour      initial condition      memristor oscillator  
Received:  15 September 2009      Revised:  29 September 2009      Accepted manuscript online: 
PACS:  05.45.Tp (Time series analysis)  
  05.45.Gg (Control of chaos, applications of chaos)  
  05.45.Xt (Synchronization; coupled oscillators)  
  02.30.Oz (Bifurcation theory)  
  84.30.Ng (Oscillators, pulse generators, and function generators)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No.~60971090), and the Natural Science Foundations of Jiangsu Province, China (Grant No.~BK2009105).

Cite this article: 

Bao Bo-Cheng, Liu Zhong, Xu Jian-Ping Transient chaos in smooth memristor oscillator 2010 Chin. Phys. B 19 030510

[1] Chua L O 1971 IEEE Trans. on Circuit Theory CT-18 507
[2] Chua L O and Kang S M 1976 Proc. IEEE 64 209
[3] Strukov D B, Snider G S, Stewart D R and Williams R S 2008 Nature 453 80
[4] Tour J M and He T 2008 Nature 453 42
[5] Itoh M and Chua L O 2008 Int. J. Bifurc. Chaos 18 3183
[6] Liu L, Su Y C and Liu C X 2007 Chin. Phys. 16 1897
[7] Bao B C, Li C B, Xu J P and Liu Z 2008 Chin. Phys. B17 4022
[8] Dong E N, Chen Z P, Chen Z Q and Yuan Z Z 2009 Chin. Phys. B18 2680
[9] Li C B and Wang D C 2009 Acta Phys. Sin. 58 764(in Chinese)
[10] Liu C X and Liu L 2009 Chin. Phys. B 18 2188
[11] Qiao X H and Bao B C 2009 Acta Phys. Sin. 58 8152(in Chinese)
[12] Woltering M and Markus M 2000 Phys. Rev. Lett. 84 630
[13] Dhamala M, Lai Y C and Kostelich E J 2003 Phys. Rev. E61 055207
[14] Yorke J A and Yorke E D 1979 J. Sta. Phys. 21 263
[15] Cang S J, Qi G Y and Chen Z Q 2009 Nonlinear Dyn. doi10.1007/s11071-009
[16] Yang H J, Yang J H and Hu G 2007 Phys. Lett. A 365 204
[17] Cafagna D and Grassi G 2007 Int. J. Bifurc. Chaos 17 209
[18] Astafèv G B, Koronovskkii A A and Hramov A E 2003 Tech.Phys. Lett. 29 923
[1] Generation of transient chaos from two-dimensional systems via a switching approach
Sun Chang-Chun, Xu Qi-Cheng, Sui Ying. Chin. Phys. B, 2013, 22(3): 030507.
[2] New initial condition of the new agegraphic dark energy model
Li Yun-He, Zhang Jing-Fei, Zhang Xin. Chin. Phys. B, 2013, 22(3): 039501.
[3] A method of recovering the initial vectors of globally coupled map lattices based on symbolic dynamics
Sun Li-Sha, Kang Xiao-Yun, Zhang Qiong, Lin Lan-Xin. Chin. Phys. B, 2011, 20(12): 120507.
[4] Dynamical analysis and experimental verification of valley current controlled buck converter
Zhou Guo-Hua, Bao Bo-Cheng, Xu Jian-Ping, Jin Yan-Yan. Chin. Phys. B, 2010, 19(5): 050509.
[5] Analysis of convergence for initial condition estimation of coupled map lattices based on symbolic dynamics
Sun Li-Sha, Kang Xiao-Yun, Lin Lan-Xin. Chin. Phys. B, 2010, 19(11): 110507.
[6] A method of estimating initial conditions of coupled maplattices based on time-varying symbolic dynamics
Shen Min-Fen, Liu Ying, Lin Lan-Xin. Chin. Phys. B, 2009, 18(5): 1761-1768.
[7] Novel four-wing and eight-wing attractors using coupled chaotic Lorenz systems
Giuseppe Grassi. Chin. Phys. B, 2008, 17(9): 3247-3251.
[8] Dynamical behaviour of Liu system with time delayed feedback
Qian Qin, Wang Lin, Ni Qiao. Chin. Phys. B, 2008, 17(2): 569-572.
[9] A new hyperchaotic dynamical system
Liu Chong-Xin. Chin. Phys. B, 2007, 16(11): 3279-3284.
No Suggested Reading articles found!