Please wait a minute...
Chin. Phys. B, 2008, Vol. 17(2): 569-572    DOI: 10.1088/1674-1056/17/2/035
GENERAL Prev   Next  

Dynamical behaviour of Liu system with time delayed feedback

Qian Qin(钱勤), Wang Lin(王琳), and Ni Qiao(倪樵)
Department of Mechanics, Huazhong University of Science and Technology, Wuhan 430074, China
Abstract  This paper investigates the dynamical behaviour of the Liu system with time delayed feedback. Two typical situations are considered and the effect of time-delay parameter on the dynamics of the system is discussed. It is shown that the Liu system with time delayed feedback may exhibit interesting and extremely rich dynamical behaviour. The evolution of the dynamics is shown to be complex with varying time-delay parameter. Moreover, the strange attractor like `wormhole' is detected via numerical simulations.
Keywords:  Liu system      time delayed feedback      dynamical behaviour      strange attractor  
Received:  07 February 2007      Revised:  11 July 2007      Accepted manuscript online: 
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
Fund: Project supported by the Science Foundation of Huazhong University of Science and Technology (Grant No 2006Q003B).

Cite this article: 

Qian Qin(钱勤), Wang Lin(王琳), and Ni Qiao(倪樵) Dynamical behaviour of Liu system with time delayed feedback 2008 Chin. Phys. B 17 569

[1] Dynamical analysis and experimental verification of valley current controlled buck converter
Zhou Guo-Hua(周国华), Bao Bo-Cheng(包伯成), Xu Jian-Ping(许建平), and Jin Yan-Yan(金艳艳). Chin. Phys. B, 2010, 19(5): 050509.
[2] Transient chaos in smooth memristor oscillator
Bao Bo-Cheng(包伯成), Liu Zhong(刘中), and Xu Jian-Ping(许建平). Chin. Phys. B, 2010, 19(3): 030510.
[3] Circuitry implementation of a novel nonautonomous hyperchaotic Liu system based on sine input
Luo Xiao-Hua(罗小华). Chin. Phys. B, 2009, 18(8): 3304-3308.
[4] Novel four-wing and eight-wing attractors using coupled chaotic Lorenz systems
.. Giuseppe Grassi. Chin. Phys. B, 2008, 17(9): 3247-3251.
[5] Adaptive synchronization of uncertain Liu system via nonlinear input
Hu Jia(胡佳) and Zhang Qun-Jiao(张群娇) . Chin. Phys. B, 2008, 17(2): 503-506.
[6] Realization of fractional-order Liu chaotic system by a new circuit unit
Xu Zhe (许喆), Liu Chong-Xin (刘崇新). Chin. Phys. B, 2008, 17(11): 4033-4038.
[7] Realization of fractional-order Liu chaotic system by circuit
Lu Jun-Jie(逯俊杰) and Liu Chong-Xin(刘崇新). Chin. Phys. B, 2007, 16(6): 1586-1590.
[8] Chaotic synchronization via linear controller
Chen Feng-Xiang(陈凤祥) and Zhang Wei-Dong(张卫东). Chin. Phys. B, 2007, 16(4): 937-941.
[9] A new hyperchaotic dynamical system
Liu Chong-Xin(刘崇新). Chin. Phys. B, 2007, 16(11): 3279-3284.
[10] NUMERICAL ANALYSIS OF A CHAOTIC SYSTEM
Ren Zhi-jian (任志坚). Chin. Phys. B, 2001, 10(9): 790-795.
[11] INVERSE SYNCHRONIZATION OF CHAOTIC SYSTEMS IN AN ERBIUM-DOPED FIBRE DUAL-RING LASER USING THE MUTUAL COUPLING METHOD
Wang Rong (王荣), Shen Ke (沈柯). Chin. Phys. B, 2001, 10(8): 711-715.
No Suggested Reading articles found!