Please wait a minute...
Chin. Phys. B, 2009, Vol. 18(12): 5155-5160    DOI: 10.1088/1674-1056/18/12/010
GENERAL Prev   Next  

Quantum information procession with fermions based on charge detection

Tang Li(唐莉)
Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China
Abstract  This paper proposes a fermionic linear optical scheme for the teleportation and entanglement concentration via entanglement swapping based on charge detection. It also proves that this method is useful in generating entangled states such as GHZ states, W states, and cluster states by using fermionic polarizing beam splitters and single spin rotations assisted by a parity check on the fermionic qubits. This scheme is nearly deterministic (i.e., with 100% successful probability) and does not need the joint Bell state measurement required in the previous schemes.
Keywords:  quantum information processing      charge detection  
Received:  18 September 2008      Revised:  16 December 2008      Accepted manuscript online: 
PACS:  03.65.Ud (Entanglement and quantum nonlocality)  
  03.67.Lx (Quantum computation architectures and implementations)  
  03.67.Mn (Entanglement measures, witnesses, and other characterizations)  

Cite this article: 

Tang Li(唐莉) Quantum information procession with fermions based on charge detection 2009 Chin. Phys. B 18 5155

[1] Fast achievement of quantum state transfer and distributed quantum entanglement by dressed states
Liang Tian(田亮), Li-Li Sun(孙立莉), Xiao-Yu Zhu(朱小瑜), Xue-Ke Song(宋学科), Lei-Lei Yan(闫磊磊), Er-Jun Liang(梁二军), Shi-Lei Su(苏石磊), Mang Feng(冯芒). Chin. Phys. B, 2020, 29(5): 050306.
[2] Error-detected single-photon quantum routing using a quantum dot and a double-sided microcavity system
A-Peng Liu(刘阿鹏), Liu-Yong Cheng(程留永), Qi Guo(郭奇), Shi-Lei Su(苏石磊), Hong-Fu Wang(王洪福), Shou Zhang(张寿). Chin. Phys. B, 2019, 28(2): 020301.
[3] Quantum information processing with nitrogen-vacancy centers in diamond
Gang-Qin Liu(刘刚钦), Xin-Yu Pan(潘新宇). Chin. Phys. B, 2018, 27(2): 020304.
[4] Probabilistic direct counterfactual quantum communication
Sheng Zhang(张盛). Chin. Phys. B, 2017, 26(2): 020304.
[5] Fidelity between Gaussian mixed states with quantum state quadrature variances
Hai-Long Zhang(张海龙), Chun Zhou(周淳), Jian-Hong Shi(史建红), Wan-Su Bao(鲍皖苏). Chin. Phys. B, 2016, 25(4): 040304.
[6] Complete hyperentangled state analysis and generation of multi-particle entanglement based on charge detection
Ji Yan-Qiang (计彦强), Jin Zhao (金钊), Zhu Ai-Dong (朱爱东), Wang Hong-Fu (王洪福), Zhang Shou (张寿). Chin. Phys. B, 2014, 23(5): 050306.
[7] Towards quantum-enhanced precision measurements:Promise and challenges
Zhang Li-Jian (张利剑), Xiao Min (肖敏). Chin. Phys. B, 2013, 22(11): 110310.
[8] Deterministic implementations of fermionic quantum SWAP and Fredkin gates for spin qubits based on charge detection
Wang Hong-Fu(王洪福), Zhang Shou(张寿), and Zhu Ai-Dong(朱爱东) . Chin. Phys. B, 2012, 21(4): 040306.
[9] Planar ion chip design for scalable quantum information processing
Wan Jin-Yin(万金银), Wang Yu-Zhu(王育竹), and Liu Liang(刘亮). Chin. Phys. B, 2008, 17(10): 3565-3573.
[10] One-step discrimination scheme on N-particle Greenberger--Horne--Zeilinger bases
Wang Xin-Wen(汪新文), Liu Xiang(刘翔), and Fang Mao-Fa(方卯发). Chin. Phys. B, 2007, 16(5): 1215-1219.
No Suggested Reading articles found!