Please wait a minute...
Chin. Phys. B, 2008, Vol. 17(7): 2466-2477    DOI: 10.1088/1674-1056/17/7/021
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Radiation forces on a three-level atom in the high-order Bessel beams

Wang Zheng-Ling(王正岭)a) b)† and Yin Jian-Ping(印建平)b) ‡
a Department of Physics, Jiangsu University, Zhenjiang 212013, China; b State Key Laboratory of Precision Spectroscopy, Department of Physics, East China Normal University, Shanghai 200062, China
Abstract  The general expressions of the average dissipative and dipole forces acting on a $\Lambda $-configuration three-level atom in an arbitrary light field are derived by means of the optical Bloch equations based on the atomic density matrix elements, and the general properties of the average dissipative and dipole forces on a three-level atom in the linearly-polarized high-order Bessel beams (HBBs) are analysed. We find a resonant property (with two resonant peaks) of the dissipative force and a non-resonant property (with two pairs of non-resonant peaks) of the dipole force on the three-level atom, which are completely different from those on the two-level atom. Meanwhile we find a saturation effect of the average dissipative force in the HBB, which comes from the saturation of the upper-level population. Our study shows that the general expressions of the average dissipative and dipole forces on the three-level atom will be simplified to those of the two-level atom under the approximation of large detuning. Finally, we study the axial and azimuthal Doppler cooling of atoms in 1D optical molasses composed of two counter-propagating HBBs and discuss the azimuthal influence of the HBB on the Doppler cooling limit. We also find that the Doppler limit of atoms in the molasses HBB is slightly below the conventional Doppler limit of ${\hbar \varGamma} /({2k_{\rm B}})$ due to the orbital angular momentum $l\hbar $ of the HBB.
Keywords:  radiation forces      optical Bloch equations      three-level atom      azimuthal Doppler cooling  
Received:  03 September 2007      Revised:  02 March 2008      Accepted manuscript online: 
PACS:  37.10.De (Atom cooling methods)  
  37.10.Vz (Mechanical effects of light on atoms, molecules, and ions)  
Fund: Project supported by the National Natural Science Foundation of China ( Grant Nos 10434060 and 10674047), the Natural Science Foundation of the Jiangsu Higher Institutions of China (Grant No 06KJB510020), and the Natural Science Foundation of Jiangsu University of China (Grant No 07JDG027).

Cite this article: 

Wang Zheng-Ling(王正岭) and Yin Jian-Ping(印建平) Radiation forces on a three-level atom in the high-order Bessel beams 2008 Chin. Phys. B 17 2466

[1] Steady and optimal entropy squeezing for three types of moving three-level atoms coupled with a single-mode coherent field
Wen-Jin Huang(黄文进) and Mao-Fa Fang(方卯发). Chin. Phys. B, 2021, 30(1): 010304.
[2] Entropy squeezing for a V-type three-level atom interacting with a single-mode field and passing through the amplitude damping channel with weak measurement
Cui-Yu Zhang(张翠玉) and Mao-Fa Fang(方卯发). Chin. Phys. B, 2021, 30(1): 010303.
[3] Dynamics of entropic uncertainty for three types of three-level atomic systems under the random telegraph noise
Xiong Xu(许雄), Mao-Fa Fang(方卯发). Chin. Phys. B, 2020, 29(5): 057305.
[4] Entropy squeezing for three-level atom interacting with a single-mode field
Fei-Fan Liu(刘非凡), Mao-Fa Fang(方卯发), Xiong Xu(许雄). Chin. Phys. B, 2019, 28(6): 060304.
[5] Improving the intensity and efficiency of compressed echo in rare-earth-ion-doped crystal
Xiu-Rong Ma(马秀荣), Yu-Qing Liang(梁裕卿), Song Wang(王松), Shuang-Gen Zhang(张双根), Yun-Long Shan(单云龙). Chin. Phys. B, 2016, 25(7): 070302.
[6] Dynamics of a three-level V-type atom driven by a cavity photon and microwave field
Yan-Li Xue(薛艳丽), Shi-Deng Zhu(朱诗灯), Ju Liu(刘菊), Ting-Hui Xiao(肖廷辉), Bao-Hua Feng(冯宝华), Zhi-Yuan Li(李志远). Chin. Phys. B, 2016, 25(4): 044203.
[7] Spontaneous emission of “polarized” V-type three-level atoms strongly coupled with an optical cavity
Xue Yan-Li (薛艳丽), Zhu Shi-Deng (朱诗灯), Li Jia-Fang (李家方), Ding Wei (丁伟), Feng Bao-Hua (冯宝华), Li Zhi-Yuan (李志远). Chin. Phys. B, 2015, 24(3): 034202.
[8] Emission spectrum of a harmonically trapped Λ-type three-level atom
Guo Hong (郭红), Tang Pei (汤佩). Chin. Phys. B, 2013, 22(5): 054204.
[9] Electromagnetically induced transparency of single Λ-type three-level atom in high-finesse optical cavity
Sun Yan-Fen (孙燕芬), Tan Lei (谭磊), Xu Yan (徐岩). Chin. Phys. B, 2013, 22(3): 030309.
[10] Generation of steady four-atom decoherence-free states via quantum-jump-based feedback
Wu Qi-Cheng (吴奇成), Ji Xin (计新). Chin. Phys. B, 2013, 22(10): 100308.
[11] Demonstration of the approximation of eliminating atomic excited populations in an atom–cavity system
Zhang Yu-Qing(张玉青), Huang Gang(黄刚), and Tan Lei(谭磊) . Chin. Phys. B, 2012, 21(2): 023701.
[12] Mechanical effects of light on the $\Xi$-type three-level atom in a high-finesse optical cavity
Liu Li-Wei(刘利伟), Tan Lei(谭磊), and Huang Gang(黄刚) . Chin. Phys. B, 2011, 20(1): 014205.
[13] Relative carrier-envelope phase dependence of resonant propagation of two-colour femtosecond pulses in V-type atomic medium
Tan Xia(谭霞), Wang Zhen-Dong(王振东), Wang Lei(王蕾), and Fan Xi-Jun(樊锡君). Chin. Phys. B, 2010, 19(6): 064211.
[14] Generation of an N-qubit phase gate via atom--cavity nonidentical coupling
Zhang Ying-Qiao (张英俏) and Zhang Shou (张寿) . Chin. Phys. B, 2009, 18(11): 4683-4689.
[15] Generation of entangled coherent states for two cavity modes via resonant interaction with a V-type three-level atom
Zheng Shi-Biao(郑仕标). Chin. Phys. B, 2008, 17(6): 2143-2146.
No Suggested Reading articles found!