Please wait a minute...
Chinese Physics, 2005, Vol. 14(4): 660-662    DOI: 10.1088/1009-1963/14/4/004
GENERAL Prev   Next  

The parametric orbits and the form invariance of three-body in one-dimension

Lou Zhi-Mei (楼智美)
Department of Physics, Shaoxing College of Arts and Sciences, Shaoxing 312000, China
Abstract  In this paper, the differential equations of motion of a three-body interacting pairwise by inverse cubic forces (``centrifugal potential'') in addition to linear forces (``harmonical potential'') are expressed in Ermakov formalism in two-dimension polar coordinates, and the Ermakov invariant is obtained. By rescaling of the time variable and the space coordinates, the parametric orbits of the three bodies are expressed in terms of relative energy H1 and Ermakov invariant. The form invariance of the transformations of two conserved quantities are also studied.
Keywords:  three-body      parametric orbits      Ermakov invariant      Hamiltonian function      conserved quan-tities      form invariance  
Received:  10 October 2004      Revised:  03 November 2004      Accepted manuscript online: 
PACS:  45.50.Jf (Few- and many-body systems ?)  
  45.05.+x (General theory of classical mechanics of discrete systems)  
  45.20.Jj (Lagrangian and Hamiltonian mechanics)  

Cite this article: 

Lou Zhi-Mei (楼智美) The parametric orbits and the form invariance of three-body in one-dimension 2005 Chinese Physics 14 660

[1] Observation of the BEC-BCS crossover in a degenerate Fermi gas of lithium atoms
Xiang-Chuan Yan(严祥传), Da-Li Sun(孙大立), Lu Wang(王璐), Jing Min(闵靖), Shi-Guo Peng(彭世国), and Kai-Jun Jiang(江开军). Chin. Phys. B, 2022, 31(1): 016701.
[2] Double differential cross sections for ionization of H by 75 keV proton impact: Assessing the role of correlated wave functions
Jungang Fan(范军刚), Xiangyang Miao(苗向阳), and Xiangfu Jia(贾祥福). Chin. Phys. B, 2020, 29(12): 120301.
[3] Effects of three-body interaction on dynamic and static structure factors of an optically-trapped Bose gas
Qi Wei (漆伟), Liang Zhao-Xin (梁兆新), Zhang Zhi-Dong (张志东). Chin. Phys. B, 2013, 22(9): 090314.
[4] Effects of effective attractive multi-body interaction on quantum phase and transport dynamics of a strongly correlated bosonic gas across the superfluid to Mott insulator transition
Sun Jian-Fang (孙剑芳), Cui Guo-Dong (崔国栋), Jiang Bo-Nan (姜伯楠), Qian Jun (钱军), Wang Yu-Zhu (王育竹). Chin. Phys. B, 2013, 22(11): 110307.
[5] Form invariance and approximate conserved quantity of Appell equations for a weakly nonholonomic system
Jia Li-Qun(贾利群), Zhang Mei-Ling(张美玲), Wang Xiao-Xiao(王肖肖), and Han Yue-Lin(韩月林) . Chin. Phys. B, 2012, 21(7): 070204.
[6] Form invariance and new conserved quantity of generalised Birkhoffian system
Mei Feng-Xiang(梅凤翔) and Wu Hui-Bin(吴惠彬). Chin. Phys. B, 2010, 19(5): 050301.
[7] Effects of three-body interaction on collective excitation and stability of Bose--Einstein condensate
Peng Ping(彭娉) and Li Guan-Qiang(李冠强). Chin. Phys. B, 2009, 18(8): 3221-3225.
[8] 3PF2 neutron superfluidity in neutron stars and three-body force effect
Cui Chang-Xi(崔常喜), Zuo Wei(左维), and H. J. Schulze. Chin. Phys. B, 2008, 17(9): 3289-3293.
[9] The dynamics of triple-well trapped Bose--Einstein condensates with atoms feeding and loss effects
Mu Ai-Xia(穆爱霞), Zhou Xiao-Yan(周小燕), and Xue Ju-Kui(薛具奎). Chin. Phys. B, 2008, 17(3): 764-770.
[10] Formation of three-body entanglement via a vacuum optical cavity induction in Tavis--Cummings model
Li Yu-Liang(李玉良) and Li Xue-Mei(李雪梅) . Chin. Phys. B, 2008, 17(3): 812-816.
[11] Three-order form invariance and conserved quantity
Yang Xue-Hui(杨学慧) and Ma Shan-Jun(马善钧). Chin. Phys. B, 2006, 15(8): 1672-1677.
[12] Lie-form invariance of nonholonomic mechanical systems
Xia Li-Li (夏丽莉), Wang Jing (王静), Hou Qi-Bao (后其宝), Li Yuan-Cheng (李元成). Chin. Phys. B, 2006, 15(3): 467-469.
[13] New non-Noether conserved quantities of mechanical system in phase space
Yan Xiang-Hong (闫向宏), Fang Jian-Hui (方建会). Chin. Phys. B, 2006, 15(10): 2197-2201.
[14] Poisson structure and Casimir functions for a noncentral dynamical system in four-dimensional phase space
Lou Zhi-Mei (楼智美), Chen Zi-Dong (陈子栋), Wang Wen-Long (汪文珑). Chin. Phys. B, 2005, 14(8): 1483-1485.
[15] Form invariances and Lutzky conserved quantities for Lagrange systems
Mei Feng-Xiang (梅凤翔), Xu Xue-Jun (许学军). Chin. Phys. B, 2005, 14(3): 449-451.
No Suggested Reading articles found!