Article Number: 2020-9-097501
CLC Number: A
Some experimental schemes to identify quantum spin liquids
Received date: 2020-04-19
Revised date: 2020-06-14
Online published: 2020-09-05
Supported by
the National Key R&D Program of China (Grant Nos. 2016YFA0301001, 2018YFGH000095, and 2016YFA0300500), Shanghai Municipal Science and Technology Major Project, China (Grant No. 2019SHZDZX04), and the Research Grants Council of Hong Kong with General Research Fund, China (Grant No. 17303819).
Copyright
Despite the apparent ubiquity and variety of quantum spin liquids in theory, experimental confirmation of spin liquids remains to be a huge challenge. Motivated by the recent surge of evidences for spin liquids in a series of candidate materials, we highlight the experimental schemes, involving the thermal Hall transport and spectrum measurements, that can result in smoking-gun signatures of spin liquids beyond the usual ones. For clarity, we investigate the square lattice spin liquids and theoretically predict the possible phenomena that may emerge in the corresponding spin liquids candidates. The mechanisms for these signatures can be traced back to either the intrinsic characters of spin liquids or the external field-driven behaviors. Our conclusion does not depend on the geometry of lattices and can broadly apply to other relevant spin liquids.
Key words: quantum spin liquids ; fractionalization ; neutron scattering ; thermal Hall effect
PACS: 75.10.Kt ; 75.10.Jm ; 61.05.fg ; 29.30.Hs
Yonghao Gao(高永豪) , Gang Chen(陈钢) . Some experimental schemes to identify quantum spin liquids. Chin. Phys. B, 2020 , 29(9) : 097501 . DOI: 10.1088/1674-1056/ab9df0
Fig. 1. Schematic illustration of spinon hoppings up to second neighbors on the square lattice. (a) The zero-flux QSL with a uniform nearest-neighbor spinon hopping coefficient t1,ij = t1,ji = t1 and next-nearest-neighbor spinon hopping coefficient t2,ij = t2,ji = t2. (b) The π-flux QSL with a gauge fixing such that the red thick lines stand for negative spinon hopping coefficient t1,ij = t1,ji = –t1, while the meaning of other lines remains unchanged. |
Fig. 2. Calculated dynamical spin structure factor ${\mathscr{S}}(\boldsymbol q,\omega )$ along the high symmetry line Γ–M–Γ–X–M in the first Brillouin zone, (a) zero-flux spinon Fermi surafce QSL with V-shape character around the Γ and (b) π-flux Dirac QSL with clear low-energy cone features around the high symmetry points. Contour plot of the upper edge of ${\mathscr{S}}(\boldsymbol q,\omega )$ in the first Brillouin zone for (c) zero-flux spinon Fermi surafce QSL and (d) π-flux Dirac QSL. (e) Original Brillouin zone (outer black square) and the folded Brillouin zone (light gray square) of square lattice. The parameters adopted in the calculation are t2/t1 = 0.2 with zero temperature kBT/t1 = 0. |
Fig. 3. (a) Dynamic spin structure factor for zero-flux QSL with t2/t1 = 0.2 and z-direction magnetic field Bz / t1 = 4. (b) Schematic illustration of the particle–hole excitations with small momenta. Such excitations for each q are degenerate at zero field, while the two-fold degeneracy is lifted soon when the Zeeman field is turned on. |
Fig. 4. (a) Schematic illustration of the spinon hopping matrix involving the complex second neighbor hopping coefficients, hopping along the arrows corresponds to ϕ, while hopping oppositely the arrows corresponds to –ϕ. Contour plot of Berry curvatures calculated when t2/t1 = 0.3 and ϕ = π/2 for (b) the lower two bands and (c) the upper two bands. (d) Representive spinon bands calculated when t2/t1 = 0.2, ϕ = π/3, and Bz/t1 = 0.4, the corresponding Chern numbers from the lowest band to the highest one are –1, –1, +1, +1, respectively. (e) The evolution of thermal Hall conductivity with temperature for different phase ϕ, where the magnetic field is fixed at Bz/t1 = 0.4, and the unit of κxy/T here is $\pi {k}_{{\rm{B}}}^{2}/6\hslash $. |
[1] |
Anderson P W 1987 Science 235 1196 DOI: 10.1126/science.235.4793.1196
|
[2] |
Kitaev A 2006 Annals of Physics 321 2 DOI: 10.1016/j.aop.2005.10.005
|
[3] |
Balents L 2010 Nature 464 199 DOI: 10.1038/nature08917
|
[4] |
Zhou Y, Kanoda K, Ng T K 2017 Rev. Mod. Phys. 89 025003 DOI: 10.1103/RevModPhys.89.025003
|
[5] |
Savary L, Balents L 2016 Reports on Progress in Physics 80 016502 DOI: 10.1088/0034-4885/80/1/016502
|
[6] |
Ma Z, Ran K, Wang J et al. 2018 Chin. Phys. B 27 106101 DOI: https://cpb.iphy.ac.cn/EN/abstract/article_72828.shtml
|
[7] |
Anderson P W 1973 Materials Research Bulletin 8 153 DOI: 10.1016/0025-5408(73)90167-0
|
[8] |
Han T H, Helton J S, Chu S et al. 2012 Nature 492 406 DOI: 10.1038/nature11659
|
[9] |
Shen Y, Li Y D, Wo H et al. 2016 Nature 540 559 DOI: 10.1038/nature20614
|
[10] |
Balz C, Lake B, Reuther J et al. 2016 Nat. Phys. 12 942 DOI: 10.1038/nphys3826
|
[11] |
Gao B, Chen T, Tam D W et al. 2019 Nat. Phys. 15 1052 DOI: 10.1038/s41567-019-0577-6
|
[12] |
Ma Z, Wang J, Dong Z Y et al. 2018 Phys. Rev. Lett. 120 087201 DOI: 10.1103/PhysRevLett.120.087201
|
[13] |
Kimchi I, Nahum A, Senthil T 2018 Phys. Rev. X 8 031028 DOI: 10.1103/PhysRevX.8.031028
|
[14] |
Zhu Z, Maksimov P A, White S R, Chernyshev A L 2017 Phys. Rev. Lett. 119 157201 DOI: 10.1103/PhysRevLett.119.157201
|
[15] |
Wen X G 2002 Phys. Rev. B 65 165113 DOI: 10.1103/PhysRevB.65.165113
|
[16] |
Essin A M, Hermele M 2013 Phys. Rev. B 87 104406 DOI: 10.1103/PhysRevB.87.1044066
|
[17] |
Essin A M, Hermele M 2014 Phys. Rev. B 90 121102 DOI: 10.1103/PhysRevB.90.121102
|
[18] |
Chen G 2017 Phys. Rev. B 96 085136 DOI: 10.1103/PhysRevB.96.085136
|
[19] |
Tsui D C, Stormer H L, Gossard A C 1982 Phys. Rev. Lett. 48 1559 DOI: 10.1103/PhysRevLett.48.1559
|
[20] |
Laughlin R B 1983 Phys. Rev. Lett. 50 1395 DOI: 10.1103/PhysRevLett.50.1395
|
[21] |
Lee P A, Nagaosa N, Wen X G 2006 Rev. Mod. Phys. 78 17 DOI: 10.1103/RevModPhys.78.17
|
[22] |
Li T, Becca F, Hu W, Sorella S 2012 Phys. Rev. B 86 075111 DOI: 10.1103/PhysRevB.86.075111
|
[23] |
Capriotti L, Becca F, Parola A, Sorella S 2001 Phys. Rev. Lett. 87 097201 DOI: 10.1103/PhysRevLett.87.097201
|
[24] |
Yu S L, Wang W, Dong Z Y, Yao Z J, Li J X 2018 Phys. Rev. B 98 134410 DOI: 10.1103/PhysRevB.98.134410
|
[25] |
Hu W J, Becca F, Parola A, Sorella S 2013 Phys. Rev. B 88 060402 DOI: 10.1103/PhysRevB.88.060402
|
[26] |
Jiang H C, Yao H, Balents L 2012 Phys. Rev. B 86 024424 DOI: 10.1103/PhysRevB.86.024424
|
[27] |
Sachdev S 1992 Phys. Rev. B 45 12377 DOI: 10.1103/PhysRevB.45.12377
|
[28] |
Li Y D, Yang X, Zhou Y, Chen G 2019 Phys. Rev. B 99 205119 DOI: 10.1103/PhysRevB.99.205119
|
[29] |
Li Y D, Chen G 2017 Phys. Rev. B 96 075105 DOI: 10.1103/PhysRevB.96.075105
|
[30] |
Li Y D, Lu Y M, Chen G 2017 Phys. Rev. B 96 054445 DOI: 10.1103/PhysRevB.96.054445
|
[31] |
Gao Y H, Chen G 2020 SciPost Physics Core 2 004 DOI: 10.21468/scipostphyscore.2.2.004
|
[32] |
Dzyaloshinsky I 1958 Journal of Physics and Chemistry of Solids 4 241 DOI: 10.1016/0022-3697(58)90076-3
|
[33] |
Moriya T 1960 Phys. Rev. 120 91 DOI: 10.1103/PhysRev.120.91
|
[34] |
Sen D, Chitra R 1995 Phys. Rev. B 51 1922 DOI: 10.1103/PhysRevB.51.1922
|
[35] |
Motrunich O I 2006 Phys. Rev. B 73 155115 DOI: 10.1103/PhysRevB.73.155115
|
[36] |
Katsura H, Nagaosa N, Lee P A 2010 Phys. Rev. Lett. 104 066403 DOI: 10.1103/PhysRevLett.104.066403
|
[37] |
Polyakov A M 1977 Nuclear Physics B 120 429 DOI: 10.1016/0550-3213(77)90086-4
|
[38] |
Qin T, Niu Q, Shi J 2011 Phys. Rev. Lett. 107 236601 DOI: 10.1103/PhysRevLett.107.236601
|
[39] |
Kasahara Y, Ohnishi T, Mizukami Y et al. 2018 Nature 559 227 DOI: 10.1038/s41586-018-0274-0
|
Export citation EndNote | Ris | Bibtex
/
〈 | 〉 |