Please wait a minute...
Chin. Phys. B, 2026, Vol. 35(1): 014601    DOI: 10.1088/1674-1056/ae181b
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Steady-state fretting response governed by periodic stress variations induced by oblique excitation

Shenghao Lu(卢晟昊)1, Huan Wang(王欢)2, and Shaoze Yan(阎绍泽)1,†
1 State Key Laboratory of Tribology, Department of Mechanical Engineering, Tinghua University, Beijing 100084, China;
2 School of Engineering and Technology, China University of Geosciences (Beijing), Beijing 100083, China
Abstract  This study investigates the mechanisms of friction-induced vibration under periodic variations in stress distribution using an improved fretting friction model. A fretting friction test system integrated with a total reflection method was developed to analyze interfacial contact behavior under dynamic loading conditions. An improved fretting friction model was established, incorporating three critical nonlinear parameters: the hysteretic friction coefficient, tangential stiffness fluctuations, and stress distribution. Through systematic validation, the model demonstrates high-fidelity replication of experimental steady-state amplitude—frequency responses. Key findings reveal that non-uniform stress distribution governs irregularities in the vibration response, and increased uniformity intensifies stick—slip instabilities. Near the stick—slip transition threshold, distinct vibration anomalies emerge due to the coupled effects of stress heterogeneity, friction hysteresis, and stiffness variations during state transitions. Furthermore, the magnitude of the normal contact force systematically alters the dominant interfacial contact mechanism. The different interfacial contact states at various frequencies lead to distinct steady-state responses. This shift elevates resonance frequencies and amplifies higher-order resonant peaks. The fretting friction model provides a predictive framework for vibration control under dynamic interfacial loading.
Keywords:  total reflection method      stress distribution      the fretting friction model      normal force      stick-slip  
Received:  20 August 2025      Revised:  30 September 2025      Accepted manuscript online:  28 October 2025
PACS:  46.55.+d (Tribology and mechanical contacts)  
  42.30.Va (Image forming and processing)  
  43.40.Ga (Nonlinear vibration)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11872033) and the Beijing Natural Science Foundation, China (Grant No. 3172017).
Corresponding Authors:  Shaoze Yan     E-mail:  yansz@mail.tsinghua.edu.cn

Cite this article: 

Shenghao Lu(卢晟昊), Huan Wang(王欢), and Shaoze Yan(阎绍泽) Steady-state fretting response governed by periodic stress variations induced by oblique excitation 2026 Chin. Phys. B 35 014601

[1] Briscoe B J 1985 Tribol. Int. 18 198
[2] Asai K and Gola M M 2015 ASME Turbo Expo., June 15–19, 2015, Montréal, Canada, V07BT33A002
[3] Pesaresi L, Salles L, Jones A, Green J S and Schwingshackl C W 2017 Mech. Syst. Signal Process. 85 662
[4] Pesaresi L, Salles L, Elliott R, Jones A, Green J S and Schwingshackl C W 2016 AMM 849 1
[5] Menq C H and Yang B D 1998 J. Sound Vib. 217 127
[6] Joannin C, Chouvion B, Thouverez F, Mbaye M and Ousty J P 2016 J. Eng. Gas Turbines Power 138 072504
[7] She H, Li C, Tang Q and Wen B 2020 Shock Vib. 2020 7604174
[8] ZhaoW, Zhang D and Xie Y 2019 J. Low Freq. Noise Vib. Act. Control 38 1505
[9] Asai K, Kudo T and Yoda H 2014 J. Eng. Gas Turbines Power 136 042101
[10] Segalman J D 2006 Struct. Control Health Monit. 13 430
[11] Vingsbo O and Soderberg B 1988 Wear 126 131
[12] Goodman L E 1980 ASME Appl. Mech. Div. AMD 39 1
[13] Usta A D, Shinde S and Eriten M 2017 J. Tribol. 139 061402
[14] Xiao H, Shao Y and Xu J 2014 Eur. J. Mech.-A Solids 43 1
[15] Valanis K C 1980 Arch. Mech. 32 68
[16] Wen Y K 1976 J. Eng. Mech., ASCE 12 249
[17] Iwan W D 1964 J. Appl. Mech. 34 612
[18] Song Y, Hartwigsen C J, McFarland D M, Vakakis A F and Bergman L A 2004 J. Sound Vib. 273 249
[19] Argatov I I and Butcher E A 2011 J. Non-Linear Mech. 46 347
[20] Parker R C and Hatch D 2002 Proc. Phys. Soc. 63 185
[21] Bhushan B 1985 ASME/ASLE Trans. 28 181
[22] Maegawa S, Itoigawa F and Nakamura T 2016 Tribol. Lett. 62 15
[23] Maegawa S, Itoigawa F and Nakamura T 2016 Tribol. Int. 93 182
[24] Maegawa S, Itoigawa F and Nakamura T 2016 Tribol. Int. 102 532
[25] Maegawa S, Itoigawa F and Nakamura T 2015 J. Adv. Mech. Des. Syst. 9 JAMDSM0069
[26] Song B, Yan S and Xiang W 2015 Chin. Phys. B 24 014601
[27] Song B and Yan S 2017 Chin. Phys. B 26 074601
[28] Luo Z, Song B, Han J and Yan S 2019 Chin. Phys. B 28 054601
[29] Luo Z, Song B, Han J and Yan S 2019 Chin. Phys. B 28 104601
[30] Han J, Luo Z, Zhang Y and Yan S 2021 Chin. Phys. B 30 054601
[31] Han J, Ding J, Wu H and Yan S 2022 Chin. Phys. B 31 034601
[32] Lu S, Han J and Yan S 2023 Chin. Phys. B 32 044602
[33] Feng Y, Wu S, Nie H, Peng C and Wang W 2024 Ind. Lubr. Tribol. 76 1108
[34] Rubinstein S M, Cohen G and Fineberg J 2004 Nature 430 1005
[35] Sanliturk K Y and Ewins D J 1996 J. Sound Vib. 193 511
[1] Micro sliding friction model considering periodic variation stress distribution of contact surface and experimental verification
Sheng-Hao Lu(卢晟昊), Jing-Yu Han(韩靖宇), and Shao-Ze Yan(阎绍泽). Chin. Phys. B, 2023, 32(4): 044602.
[2] Mechanism analysis and improved model for stick-slip friction behavior considering stress distribution variation of interface
Jingyu Han(韩靖宇), Jiahao Ding(丁甲豪), Hongyu Wu(吴宏宇), and Shaoze Yan(阎绍泽). Chin. Phys. B, 2022, 31(3): 034601.
[3] Experimental analysis of interface contact behavior using a novel image processing method
Jingyu Han(韩靖宇), Zhijun Luo(罗治军), Yuling Zhang(张玉玲), and Shaoze Yan(阎绍泽). Chin. Phys. B, 2021, 30(5): 054601.
[4] Evolution of real contact area during stick-slip movement observed by total reflection method
Zhijun Luo(罗治军), Baojiang Song(宋保江), Jingyu Han(韩靖宇), Shaoze Yan(阎绍泽). Chin. Phys. B, 2019, 28(10): 104601.
[5] Complex dynamics of an archetypal self-excited SD oscillator driven by moving belt friction
Zhi-Xin Li(李志新), Qing-Jie Cao(曹庆杰), Léger Alain. Chin. Phys. B, 2016, 25(1): 010502.
[6] Effects of ramp vibrational states on flexural intrinsic vibrations in Besocke-style scanners
Zhang Hui (张辉), Jiang Guo-Zhu (蒋国珠), Liu Zhao-Qun (刘朝群), Zhang Shu-Yi (张淑仪), Fan Li (范理). Chin. Phys. B, 2013, 22(6): 068103.
[7] Finite element analysis of stress and strain distributions in InAs/GaAs quantum dots
Zhou Wang-Min (周旺民), Wang Chong-Yu (王崇愚), Chen Yong-Hai (陈涌海), Wang Zhan-Guo (王占国). Chin. Phys. B, 2006, 15(6): 1315-1319.
No Suggested Reading articles found!