|
Special Issue:
|
| SPECIAL TOPIC — A celebration of the 90th Anniversary of the Birth of Bolin Hao |
Prev
Next
|
|
|
A comprehensive evaluation of RNA secondary structures prediction methods |
| Xinlong Chen(陈昕龙)1, En Lou(娄恩)1, Zouchenyu Zhou(周邹辰毓)1, Ya-Lan Tan(谭雅岚)2,‡, and Zhi-Jie Tan(谭志杰)1,† |
1 Department of Physics and Key Laboratory of Artificial Micro & Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China; 2 School of Bioengineering and Health & Research Center of Nonlinear Science, Wuhan Textile University, Wuhan 430200, China |
|
|
|
|
Abstract RNAs have important biological functions and the functions of RNAs are generally coupled to their structures, especially their secondary structures. In this work, we have made a comprehensive evaluation of the performances of existing top RNA secondary structure prediction methods, including five deep-learning (DL) based methods and five minimum free energy (MFE) based methods. First, we made a brief overview of these RNA secondary structure prediction methods. Afterwards, we built two rigorous test datasets consisting of RNAs with non-redundant sequences and comprehensively examined the performances of the RNA secondary structure prediction methods through classifying the RNAs into different length ranges and different types. Our examination shows that the DL-based methods generally perform better than the MFE-based methods for RNAs with long lengths and complex structures, while the MFE-based methods can achieve good performance for small RNAs and some specialized MFE-based methods can achieve good prediction accuracy for pseudoknots. Finally, we provided some insights and perspectives in modeling RNA secondary structures.
|
Received: 11 June 2025
Revised: 26 June 2025
Accepted manuscript online: 02 July 2025
|
|
PACS:
|
87.10.Vg
|
(Biological information)
|
| |
87.15.bg
|
(Tertiary structure)
|
| |
87.14.gn
|
(RNA)
|
|
| Fund: We are grateful to Profs Shi-Jie Chen (University of Missouri) and Jian Zhang (Nanjing University) for valuable discussions. This work was supported by grants from the National Science Foundation of China (Grant Nos. 12375038 and 12075171 to ZJT, and 12205223 to YLT). |
Corresponding Authors:
Zhi-Jie Tan, Ya-Lan Tan
E-mail: zjtan@whu.edu.cn;yltan@wtu.edu.cn
|
Cite this article:
Xinlong Chen(陈昕龙), En Lou(娄恩), Zouchenyu Zhou(周邹辰毓), Ya-Lan Tan(谭雅岚), and Zhi-Jie Tan(谭志杰) A comprehensive evaluation of RNA secondary structures prediction methods 2025 Chin. Phys. B 34 088710
|
[1] Tinoco I and Bustamante C 1999 J. Mol. Biol. 293 271 [2] Qi F, Chen J, Chen Y, Sun J, Lin Y, Chen Z and Kapranov P 2024 Genomics Proteomics Bioinformatics 22 qzae043 [3] Montange R K and Batey R T 2008 Annu. Rev. Biophys. 37 117 [4] Chen S J 2008 Annu. Rev. Biophys. 37 197 [5] Ken M L, Roy R, Geng A, Ganser L R, Manghrani A, Cullen B R, Schulze-Gahmen U, Herschlag D and Al-Hashimi H M 2023 Nature 617 835 [6] Moore P B and Steitz T A 2011 Cold Spring Harb. Perspect. Biol. 3 a003780 [7] Wilson T J and Lilley D M J 2021 WIREs RNA 12 e1651 [8] Roundtree I A, Evans M E, Pan T and He C 2017 Cell 169 1187 [9] Woodson S A 2008 Curr. Opin. Chem. Biol. 12 667 [10] Shi Y Z, Wang F H, Wu Y Y and Tan Z J 2014 J. Chem. Phys. 141 105102 [11] Sun L Z, Zhang D and Chen S J 2017 Annu. Rev. Biophys. 46 227 [12] Agrawal N, Dasaradhi P V N, Mohmmed A, Malhotra P, Bhatnagar R K and Mukherjee S K 2003 Microbiol. Mol. Biol. Rev. 67 657 [13] Zhang J, Lin M, Chen R, Wang W and Liang J 2008 J. Chem. Phys. 128 125107 [14] Zhang J, Dundas J, Lin M, Chen R,WangWand Liang J 2009 RNA 15 2248 [15] Zhang Y, Zhang J and Wang W 2011 J. Am. Chem. Soc. 133 6882 [16] Cao S and Chen S J 2011 J. Phys. Chem. B 115 4216 [17] Zhao Y, Huang Y, Gong Z, Wang Y, Man J and Xiao Y 2012 Sci. Rep. 2 734 [18] Boniecki M J, Lach G, Dawson W K, Tomala K, Lukasz P, Soltysinski T, Rother K M and Bujnicki J M 2016 Nucleic Acids Res. 44 e63 [19] Wang J, Mao K, Zhao Y, Zeng C, Xiang J, Zhang Y and Xiao Y 2017 Nucleic Acids Res. 45 6299 [20] Zhang D and Chen S J 2018 J. Chem. Theory Comput. 14 2230 [21] Du Z, Su H, Wang W, Ye L, Wei H, Peng Z, Anishchenko I, Baker D and Yang J 2021 Nat. Protoc. 16 5634 [22] Li J, Zhang S, Zhang D and Chen S J 2022 Bioinformatics 38 4042 [23] Wang X, Tan Y L, Yu S, Shi Y Z and Tan Z J 2023 Biophys. J. 122 1503 [24] Tan Y L, Guo C, Xu J J, Shi Y Z and Tan Z J 2025 Commun. Theor. Phys. in Press [25] Zhang J, Bian Y, Lin H and Wang W 2012 Phys. Rev. E 85 021909 [26] Popenda M, Szachniuk M, Antczak M, Purzycka K J, Lukasiak P, Bartol N, Blazewicz J and Adamiak R W 2012 Nucleic Acids Res. 40 e112 [27] Biesiada M, Pachulska-Wieczorek K, Adamiak R W and Purzycka K J 2016 Methods 103 120 [28] Wang J, Wang J, Huang Y and Xiao Y 2019 Int. J. Mol. Sci. 20 4116 [29] Xiong P, Wu R, Zhan J and Zhou Y 2021 Nat. Commun. 12 2777 [30] Zhou L,Wang X, Yu S, Tan Y L and Tan Z J 2022 Biophys. J. 121 3381 [31] Zhang Y, Wang J and Xiao Y 2022 J. Mol. Biol. 434 167452 [32] Tan Y L, Feng C J, Wang X, Zhang W and Tan Z J 2021 Chin. Phys. B 30 028705 [33] Bugnon L A, Edera A A, Prochetto S, Gerard M, Raad J, Fenoy E, Rubiolo M, Chorostecki U, Gabaldón T, Ariel F, Di Persia L E, Milone D H and Stegmayer G 2022 Brief. Bioinform. 23 bbac205 [34] Wang X, Yu S, Lou E, Tan Y L and Tan Z J 2023 Molecules 28 5532 [35] Binet T, Padiolleau-Lefèvre S, Octave S, Avalle B and Maffucci I 2023 BMC Bioinformatics 24 422 [36] Rose P W, Prlić A, Altunkaya A, Bi C, Bradley A R, Christie C H, Costanzo L D, Duarte J M, Dutta S, Feng Z, Green R K, Goodsell D S, Hudson B, Kalro T, Lowe R, Peisach E, Randle C, Rose A S, Shao C, Tao Y P, Valasatava Y, Voigt M,Westbrook J D,Woo J, Yang H, Young J Y, Zardecki C, Berman H M, Burley S K 2017 Nucleic Acids Res. 45 D271 [37] Zhang J, Fei Y, Sun L and Zhang Q C 2022 Nat. Methods 19 1193 [38] Nussinov R and Jacobson A B 1980 Proc. Natl. Acad. Sci. USA 77 6309 [39] Zuker M and Stiegler P 1981 Nucleic Acids Res. 9 133 [40] Zuker M 1989 Sci. New Ser. 244 48 [41] Hofacker I L, Fontana W, Stadler P F, Bonhoeffer L S, Tacker M and Schuster P 1994 Monatshefte Chem. Chem. Mon. 125 167 [42] Knudsen B and Hein J 2003 Nucleic Acids Res. 31 342 [43] Zuker M 2003 Nucleic Acids Res. 31 3406 [44] Do C B, Woods D A and Batzoglou S 2006 Bioinformatics 22 e90 [45] Hamada M, Kiryu H, Sato K, Mituyama T and Asai K 2009 Bioinformatics 25 465 [46] Lu Z J, Gloor J W and Mathews D H 2009 RNA 15 1805 [47] Reuter J S and Mathews D H 2010 BMC Bioinformatics 11 129 [48] Sato K, Kato Y, Hamada M, Akutsu T and Asai K 2011 Bioinformatics 27 i85 [49] Lorenz R, Bernhart S H, Höner Zu Siederdissen C, Tafer H, Flamm C, Stadler P F and Hofacker I L 2011 Algorithms Mol. Biol. 6 26 [50] Deng F, Ledda M, Vaziri S and Aviran S 2016 RNA 22 1109 [51] Jabbari H, Wark I, Montemagno C and Will S 2018 Bioinformatics 34 3849 [52] Wang L, Liu Y, Zhong X, Liu H, Lu C, Li C and Zhang H 2019 Front. Genet. 10 143 [53] Cheng Y, Zhang S, Xu X and Chen S J 2021 J. Phys. Chem. B 125 10108 [54] Andrikos C, Makris E, Kolaitis A, Rassias G, Pavlatos C and Tsanakas P 2022 Methods Protoc. 5 14 [55] Singh J, Hanson J, Paliwal K and Zhou Y 2019 Nat. Commun. 10 5407 [56] Sato K, Akiyama M and Sakakibara Y 2021 Nat. Commun. 12 941 [57] Singh J, Paliwal K, Zhang T, Singh J, Litfin T and Zhou Y 2021 Bioinformatics 37 2589 [58] Fu L, Cao Y, Wu J, Peng Q, Nie Q and Xie X 2022 Nucleic Acids Res. 50 e14 [59] Mao K, Wang J and Xiao Y 2022 Molecules 27 1030 [60] Chen C C and Chan Y M 2023 BMC Bioinformatics 24 122 [61] Qiu X 2023 PLOS Comput. Biol. 19 e1011047 [62] Abramson J, Adler J, Dunger J, et al. 2024 Nature 630 493 [63] Zhou Y, Pedrielli G, Zhang F and Wu T 2024 BMC Bioinformatics 25 316 [64] Zhou S K, Zhu H and Xiong P 2024 preprint [65] Qiu X 2025 Biol. Methods Protoc. 10 bpae097 [66] Yang C, Wu H, Shen T, Zou K and Sun S 2025 Proc. AAAI Conf. Artif. Intell. 39 950 [67] Seetin M G and Mathews D H 2012 Bacterial Regulatory RNA (Totowa, NJ: Humana Press) p. 99 [68] Zhang C, Zhang Y and Pyle A M 2023 J. Mol. Biol. 435 167904 [69] Zhang Y, Lang M, Jiang J, Gao Z, Xu F, Litfin T, Chen K, Singh J, Huang X, Song G, Tian Y, Zhan J, Chen J and Zhou Y 2024 Nucleic Acids Res. 52 e3 [70] Calonaci N, Jones A, Cuturello F, Sattler M and Bussi G 2020 NAR Genomics Bioinforma. 2 lqaa090 [71] Zhao Q, Zhao Z, Fan X, Yuan Z, Mao Q and Yao Y 2021 PLoS Comput. Biol. 17 e1009291 [72] Yu H, Qi Y and Ding Y 2022 Front. Mol. Biosci. 9 869601 [73] Justyna M, Antczak M and Szachniuk M 2023 Brief. Bioinform. 24 bbad153 [74] Wu K E, Zou J Y and Chang H 2023 Brief. Bioinform. 24 bbad210 [75] Zhang S, Li J and Chen S J 2024 Biophys. J. 123 2647 [76] Mathews D H, Andre T C, Kim J, Turner D H and Zuker M 1997 Molecular Modeling of Nucleic Acids (Washington, DC: American Chemical Society) pp. 246–257 [77] Lu X J, Bussemaker H J and Olson W K 2015 Nucleic Acids Res. 43 e142 [78] Tan Y L, Feng C J, Jin L, Shi Y Z, Zhang W and Tan Z J 2019 RNA 25 793 [79] Tan Y L,Wang X, Shi Y Z, ZhangWand Tan Z J 2022 Biophys. J. 121 142 [80] Tan Y L, Wang X, Yu S, Zhang B and Tan Z J 2023 NAR Genomics Bioinforma. 5 lqad016 [81] Fu L, Niu B, Zhu Z, Wu S and Li W 2012 Bioinformatics 28 3150 [82] Matthews B W1975 Biochim. Biophys. Acta BBA - Protein Struct. 405 442 [83] Chen H L, Condon A and Jabbari H 2009 J. Comput. Biol. 16 803 [84] Wexler Y, Zilberstein C and Ziv-Ukelson M 2007 J. Comput. Biol. 14 856 [85] Backofen R, Tsur D, Zakov S and Ziv-Ukelson M 2011 J. Discrete Algorithms 9 12 [86] Andronescu M S, Pop C and Condon A E 2010 RNA 16 26 [87] Danaee P, Rouches M,Wiley M, Deng D, Huang L and Hendrix D 2018 Nucleic Acids Res. 46 5381 [88] Kamisetty H, Ovchinnikov S and Baker D 2013 Proc. Natl. Acad. Sci. USA 110 15674 [89] McCaskill J S 1990 Biopolymers 29 1105 [90] Rauzan B, McMichael E, Cave R, Sevcik L R, Ostrosky K, Whitman E, Stegemann R, Sinclair A L, Serra M J and Deckert A A 2013 Biochemistry 52 765 [91] Weber G 2015 Bioinformatics 31 871 [92] Wang Y, Wang Z, Wang Y, Liu T and Zhang W 2018 J. Chem. Phys. 148 045101 [93] Matthies M C, Krueger R, Torda A E and Ward M 2023 Nucleic Acids Res. 52 e14 [94] Mathews D H, Sabina J, Zuker M and Turner D H 1999 J. Mol. Biol. 288 911 [95] Tan Z J and Chen S J 2010 Biophys. J. 99 1565 [96] Tan Z J and Chen S J 2011 Biophys. J. 101 176 [97] Xi K, Wang F H, Xiong G, Zhang Z L and Tan Z J 2018 Biophys. J. 114 1776 [98] Dong H L, Zhang C, Dai L, Zhang Y, Zhang X H and Tan Z J 2024 Nucleic Acids Res. 52 2519 [99] Qiang X W, Zhang C, Dong H L, Tian F J, Fu H, Yang Y J, Dai L, Zhang X H and Tan Z J 2022 Phys. Rev. Lett. 128 108103 [100] Sugimoto N, Nakano S, YoneyamaMand Honda K 1996 Nucleic Acids Res. 24 4501 [101] SantaLucia, J, Allawi H T and Seneviratne P A 1996 Biochemistry 35 3555 [102] Xia T, SantaLucia J, Burkard M E, Kierzek R, Schroeder S J, Jiao X, Cox C and Turner D H 1998 Biochemistry 37 14719 [103] Zuber J, Schroeder S J, Sun H, Turner D H and Mathews D H 2022 Nucleic Acids Res. 50 5251 [104] SantaLucia J 1998 Proc. Natl. Acad. Sci. USA 95 1460 [105] SantaLucia J and Hicks D 2004 Annu. Rev. Biophys. Biomol. Struct. 33 415 [106] Owczarzy R, You Y, Moreira B G, Manthey J A, Huang L, Behlke M A and Walder J A 2004 Biochemistry 43 3537 [107] Tan Z J and Chen S J 2006 Biophys. J. 90 1175 [108] Tan Z J and Chen S J 2007 Biophys. J. 92 3615 [109] Tan Z J and Chen S J 2008 Biophys. J. 95 738 [110] Owczarzy R, Moreira B G, You Y, Behlke M A and Walder J A 2008 Biochemistry 47 5336 [111] Chen Z and Znosko B M 2013 Biochemistry 52 7477 [112] Jin L, Shi Y Z, Feng C J, Tan Y L and Tan Z J 2018 Biophys. J. 115 1403 [113] Shi Y Z, Jin L, Feng C J, Tan Y L and Tan Z J 2018 PLoS Comput. Biol. 14 e1006222 [114] Nguyen H T, Hori N and Thirumalai D 2019 Proc. Natl. Acad. Sci. USA 116 21022 [115] Jin L, Tan Y L,Wu Y,Wang X, Shi Y Z and Tan Z J 2019 RNA 25 1532 [116] Zhou H X, Rivas G and Minton A P 2008 Annu. Rev. Biophys. 37 375 [117] Qin S and Zhou H X 2009 Biophys. J. 97 12 [118] Knowles D B, LaCroix A S, Deines N F, Shkel I and Record M T 2011 Proc. Natl. Acad. Sci. USA 108 12699 [119] Denesyuk N A and Thirumalai D 2011 J. Am. Chem. Soc. 133 11858 [120] Adams M S and Znosko B M 2019 Nucleic Acids Res. 47 3658 [121] Ghosh S, Takahashi S, Banerjee D, Ohyama T, Endoh T, Tateishi- Karimata H and Sugimoto N 2023 Nucleic Acids Res. 51 4101 [122] Tan Z J and Chen S J 2012 Biophys. J. 103 827 [123] Feng C, Tan Y L, Cheng Y X, Shi Y Z and Tan Z J 2021 Front. Mol. Biosci. 8 666369 [124] Banks A, Qin S, Weiss K L, Stanley C B and Zhou H X 2018 Biophys. J. 114 1067 [125] Zheng C C, Chen Y L, Dong H L, Zhang X H and Tan Z J 2024 J. Chem. Phys. 161 075101 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|