Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(8): 088705    DOI: 10.1088/1674-1056/adcd44
Special Issue:
SPECIAL TOPIC — A celebration of the 90th Anniversary of the Birth of Bolin Hao Prev   Next  

Role of active stress and actin alignment in cell division: A hydrodynamic perspective

Kunhao Dong(董堃昊)1,†, Menglong Feng(冯梦龙)1,†, and Rui Ma(马锐)2,‡
1 Department of Physics, College of Physical Science and Technology, Xiamen University, Xiamen 361005, China;
2 Fujian Provincial Key Laboratory for Soft Functional Materials Research, Research Institute for Biomimetics and Soft Matter, Department of Physics, College of Physical Science and Technology, Xiamen University, Xiamen 361005, China
Abstract  Cell division is a fundamental biological process in which a parent cell divides into two daughter cells. The cell cortex, a thin layer primarily composed of actin filaments and myosin motors beneath the plasma membrane, plays a critical role in ensuring proper cell division. In this study, we apply a hydrodynamic model to describe the actin cortex as an active nematic surface, incorporating orientational order arising from actin filament alignment and anisotropic active stress produced by myosin motors. By analyzing the linearized dynamics, we investigate how shape, flow, and stress regulators evolve over time when the surface deviates slightly from a sphere. Our findings reveal that the active alignment of actin filaments, often overlooked in previous studies, is crucial for successful division. Furthermore, we demonstrate that a cortical chiral flow naturally emerges as a consequence of this active alignment. Overall, our results provide a mechanistic explanation for key phenomena observed during cell division, offering new insights into the role of active stress and filament alignment in cortical dynamics.
Keywords:  cell division      actin cortex      nematic surface      chiral flow  
Received:  23 February 2025      Revised:  01 April 2025      Accepted manuscript online:  16 April 2025
PACS:  87.16.D- (Membranes, bilayers, and vesicles)  
  87.16.Ka (Filaments, microtubules, their networks, and supramolecular assemblies)  
  87.17.Ee (Growth and division)  
  87.17.Pq (Morphogenesis ?)  
Fund: We acknowledge financial support from the National Natural Science Foundation of China (Grant No. 12474199) and the Fundamental Research Funds for Central Universities of China (Grant No. 20720240144), and 111 Project (B16029).
Corresponding Authors:  Rui Ma     E-mail:  ruima@xmu.edu.cn

Cite this article: 

Kunhao Dong(董堃昊), Menglong Feng(冯梦龙), and Rui Ma(马锐) Role of active stress and actin alignment in cell division: A hydrodynamic perspective 2025 Chin. Phys. B 34 088705

[1] Bechinger C, Di Leonardo R, Loewen H, Reichhardt C, Volpe G and Volpe G 2016 Rev. Mod. Phys. 88 45006
[2] Agudo-Canalejo J and Nasouri B 2020 Chin. Phys. B 29 064704
[3] Toner J and Tu Y 1998 Phys. Rev. E 58 4828
[4] Mahault B, Ginelli F and Chate H 2019 Phys. Rev. Lett. 123 218001
[5] Lauga E and Powers T R 2009 Reports on Progress in Physics 72 096601
[6] Doostmohammadi A, Ignes-Mullol J, Yeomans J Mand Sagues F 2018 Nat. Commun. 9 3246
[7] Zhou Y, Li Y and Marchesoni F 2023 Chin. Phys. Lett. 40 100505
[8] Saw T B, Doostmohammadi A, Nier V, Kocgozlu L, Thampi S, Toyama Y, Marcq P, Lim C T, Yeomans JMand Ladoux B 2017 Nature 544 212
[9] Doostmohammadi A and Ladoux B 2022 Trends in Cell Biology 32 140
[10] Wu H, de Leon M A P and Othmer H G 2018 Journal of Mathematical Biology 77 595
[11] Juelicher F, Grill S W and Salbreux G 2018 Reports on Progress in Physics 81 076601
[12] Salbreux G, Juelicher F, Prost J and Callan-Jones A 2022 Phys. Rev. Research 4 033158
[13] Salbreux G and Juelicher F 2017 Phys. Rev. E 96 032404
[14] Li M, Xing X, Yuan J and Zeng Z 2024 Heliyon 10 e29923
[15] Levayer R and Lecuit T 2012 Trends in Cell Biology 22 61
[16] Brunet T 2023 Current Biology 33 R966
[17] Deserno M 2015 Chemistry and Physics of Lipids 185 11
[18] Sheng J, Wang K Y, Ma B B, Zhu T and Jiang Z Y 2018 Acta Phys. Sin. 67 158701 (in Chinese)
[19] Liao Y H, Zhu H C, Tang Z M and Huang K M 2015 Chin. Phys. B 24 100204
[20] Zhong-can O Y and Helfrich W 1989 Phys. Rev. A 39 5280
[21] Clark A, Dierkes K and Paluch E 2013 Biophysical Journal 105 570
[22] Prost J, Juelicher F and Joanny J F 2015 European Journal of Cell Biology 11 111
[23] Chugh P, Clark A G, Smith M B, Cassani D A D, Dierkes K, Ragab A, Roux P P, Charras G, Salbreux G and Paluch E K 2017 Nature Cell Biology 19 689
[24] Fink A, Fazliev S, Abele T, Spatz J P, Goepfrich K and Cavalcanti- Adam E A 2024 European Journal of Cell Biology 103 151428
[25] Werner M E, Ray D D, Breen C, Staddon M F, Jug F, Banerjee S and Maddox A S 2024 Current Biology 34 3201
[26] Song W, He Q, Cui Y, Möhwald H, Diez S and Li J 2009 Biochemical and Biophysical Research Communications 379 175
[27] Feierbach B and Chang F 2001 Current Opinion in Microbiology 4 713
[28] Laporte D, Zhao R and Wu J Q 2010 Seminars in Cell and Developmental Biology 21 892
[29] Stachowiak M, Laplante C, Chin H, Guirao B, Karatekin E, Pollard T and O’Shaughnessy B 2014 Developmental Cell 29 547
[30] Pandya P, Orgaz J L and Sanz-Moreno V 2017 Current Opinion in Cell Biology 48 87
[31] Laplante C, Berro J, Karatekin E, Hernandez-Leyva A, Lee R and Pollard T 2015 Current Biology 25 1955
[32] Baldauf L, van Buren L, Fanalista F and Koenderink G H 2022 ACS Synthetic Biology 11 3120
[33] Kondo T, Itakura S, Hamao K and Hosoya H 2012 Experimental Cell Research 318 915
[34] Taneja N, Bersi M R, Baillargeon S M, Fenix A M, Cooper J A, Ohi R, Gama V, Merryman W D and Burnette D T 2020 Cell Reports 31 107477
[35] Sun L, Guan R, Lee I J, Liu Y, Chen M, Wang J, Wu J Q and Chen Z 2015 Developmental Cell 33 413
[36] Willet A H, McDonald N A and Gould K L 2015 Current Opinion in Microbiology 28 46
[37] Hall A R, Choi Y K, Im W and Vavylonis D 2024 Structure 32 242
[38] Di Cio S, Iskratsch T, Connelly J T and Gautrot J E 2020 Biomaterials 232 119683
[39] Martín-García R, Arribas V, Coll P M, Pinar M, Viana R A, Rincón S A, Correa-Bordes J, Ribas J C and Pérez P 2018 Cell Reports 25 772
[40] Somers W and Saint R 2003 Developmental Cell 4 29
[41] Aspenstrom P 2008 International Review of Cell and Molecular Biology 272 1
[42] Bashirzadeh Y, Moghimianavval H and Liu A P 2022 iScience 25 104236
[43] Bathe M and Chang F 2010 Trends in Microbiology 18 38
[44] Lebedev M, Chan F Y, Lochner A, Bellessem J, Osório D S, Rackles E, Mikeladze-Dvali T, Carvalho A X and Zanin E 2023 Cell Reports 42 113076
[45] Cortes D B, Maddox P S, Nédéléç F J and Maddox A S 2023 Biophysical Journal 122 3611
[46] Carim S C and Hickson G R 2023 iScience 26 106903
[47] Ennomani H, Letort G, Guérin C, Martiel J L, Cao W, Nédélec F, De La Cruz E, Théry M and Blanchoin L 2016 Current Biology 26 616
[48] Wu S K, Budnar S, Yap A S and Gomez G A 2014 European Journal of Cell Biology 93 396
[49] Martin A C 2010 Developmental Biology 341 114
[50] Arasada R and Pollard T 2014 Cell Reports 8 1533
[51] Arbizzani F, Mavrakis M, Hoya M, Ribas J C, Brasselet S, Paoletti A and Rincon S A 2022 Cell Reports 39 110722
[52] Founounou N, Loyer N and Le Borgne R 2013 Developmental Cell 24 242
[53] Rizvi M S and Das S L 2012 Journal of Theoretical Biology 315 139
[54] Carlton J G and Baum B 2023 Current Opinion in Cell Biology 85 102274
[55] Sugioka K 2022 Seminars in Cell and Developmental Biology 127 100
[56] Middelkoop T C, Garcia-Baucells J, Quintero-Cadena P, Pimpale L G, Yazdi S, Sternberg P W, Gross P and Grill S W 2021 Proc. Natl. Acad. Sci. USA 118 e2021814118
[57] de Kinkelder E M, Fischer-Friedrich E and Aland S 2023 New J. Phys. 25 053034
[58] Salbreux G, Prost J and Joanny J F 2009 Phys. Rev. Lett. 103 058102
[59] Bell S, Lin S Z, Rupprecht J F and Prost J 2022 Phys. Rev. Lett. 129 118001
[60] Khoromskaia D, Salbreux G and Kozlov M M 2023 eLife 12 e75878
[61] Mietke A, Juelicher F and Sbalzarini I F 2019 Proc. Natl. Acad. Sci. USA 116 29
[62] Mietke A, Jemseena V, Kumar K V, Sbalzarini I F and Juelicher F 2019 Phys. Rev. Lett. 123 188101
[63] Mayer M, Depken M, Bois J S, Juelicher F and Grill S W 2010 Nature 467 617
[64] Torres-Sánchez A, Millán D and Arroyo M 2019 Journal of Fluid Mechanics 872 218
[65] Gao D, Sun H, Ma R and Mietke A 2025 Preprint arXiv: 2501.17849
[66] Onsager L 1949 Annals of the New York Academy of Sciences 51 627
[67] Pathria R and Beale P D 2011 15-fluctuations and nonequilibrium statistical mechanics Statistical Mechanics (Third Edition) (Boston: Academic Press) pp. 583–635
[68] Bement W M 2002 Current Biology 12 R12
[69] Backouche F, Haviv L, Groswasser D and Bernheim-Groswasser A 2006 Physical Biology 3 264
[70] Schuppler M, Keber F C, Kroger M and Bausch A R 2016 Nat. Commun. 7 13120
[71] Dean S O, Rogers S L, Stuurman N, Vale R D and Spudich J A 2005 Proc. Natl. Acad. Sci. USA 102 13473
[72] Kreyszig E 1991 Differential Geometry (New York: Dover)
[73] Yang P and Tu Z C 2016 Acta Phys. Sin. 65 188701 (in Chinese)
[74] Liang Y F and Zhang S G 2017 Acta Phys. Sin. 66 158701 (in Chinese)
[75] Ji D D and Zhang S G 2018 Acta Phys. Sin. 67 188701 (in Chinese)
[76] Zhang P W and Shi A C 2015 Chin. Phys. B 24 128707
[77] Wei T, Zhang L and Zhang Y 2020 Chin. Phys. B 29 048702
[78] Liang Y R and Liang Q 2019 Acta Phys. Sin. 68 028701 (in Chinese)
[79] Li S L and Zhang S G 2010 Acta Phys. Sin. 59 5202 (in Chinese)
[80] Zhang Y H, McDargh Z and Tu Z C 2018 Chin. Phys. B 27 038704
[81] Gennes P G D and Prost J 1993 The Physics of Liquid Crystals (Oxford University Press)
[82] Sedzinski J, Biro M, Oswald A, Tinevez J Y, Salbreux G and Paluch E 2011 Nature 476 462
[83] Sulston J and Horvitz H 1977 Developmental Biology 56 110
[84] Sulston J, Schierenberg E, White J and Thomson J 1983 Developmental Biology 100 64
[1] USING AN EVOLUTIONARY ALGORITHM BASED ON CELL DIVISION OPERATION TO CALCULATE GROUND-STATE ENERGIES OF DOUBLE-ELECTRON SYSTEMS IN MAGNETIC FIELDS
Xu Jing-wen (徐静雯), Liu Lian-jun (刘莲君), Mao You-dong (毛有东). Chin. Phys. B, 2001, 10(12): 1118-1123.
No Suggested Reading articles found!