Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(2): 023203    DOI: 10.1088/1674-1056/ad9a9a
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Design and photophysical characterization of quasi-intrinsic fluorescent probes utilized in DNA sequencing

Yaning Zhang(张雅宁), Yongkang Lyu(吕永康), Zhizheng Cao(曹智正), Xiaolin Chen(陈晓琳), Qingtian Meng(孟庆田)†, and Changzhe Zhang(张常哲)‡
School of Physics and Electronics, Shandong Normal University, Jinan 250358, China
Abstract  To understand the gene-based biological processes in-depth, the single-molecule real-time sequencing has drawn increasing attention with promoted by the Human Genome Project. Herein, a set of newly designed canonical fluorescent bases (Ay, tC, Gb, Tp) are proposed for four-color DNA sequencing. These quasi-intrinsic probes are derived from the fluorophore replacement and ring expansion on natural bases, which still keep the pyrimidine or purine underlying skeleton and Watson-Crick hydrogen bonding face to allow minimal perturbation to the native DNA duplex. More importantly, these nucleobase analogues possess red-shifted absorption and efficient photoluminescence due to the enhanced π-conjugation in character. Meanwhile, the four analogues could generate distinct emission wavelength (Δλ50 nm) for real-time sequencing. To assess the biological employment of the proposed biosensors, the effects of base pairing and linking deoxyribose are also considered.
Keywords:  DNA sequencing      base analogues      fluorescent probe  
Received:  19 September 2024      Revised:  20 November 2024      Accepted manuscript online:  05 December 2024
PACS:  32.50.+d (Fluorescence, phosphorescence (including quenching))  
  31.15.E-  
  33.50.Dq (Fluorescence and phosphorescence spectra)  
  34.70.+e (Charge transfer)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11804195, 11847224, 11674198, and 12274265) and the Natural Science Foundation of Shandong Province, China (Grant Nos. ZR2018BA034 and ZR2022MA006).
Corresponding Authors:  Qingtian Meng, Changzhe Zhang     E-mail:  qtmeng@sdnu.edu.cn;zhe852456@126.com

Cite this article: 

Yaning Zhang(张雅宁), Yongkang Lyu(吕永康), Zhizheng Cao(曹智正), Xiaolin Chen(陈晓琳), Qingtian Meng(孟庆田), and Changzhe Zhang(张常哲) Design and photophysical characterization of quasi-intrinsic fluorescent probes utilized in DNA sequencing 2025 Chin. Phys. B 34 023203

[1] Watson J D and Crick F H C 1953 Nature 171 737
[2] Watson J D and Crick F H C 1953 Nature 171 964
[3] Zhu J, Xue J, Zhao W, Zhang C, Feng X Q and Wang K G 2023 Chin. Phys. B 32 118704
[4] Wong K C, Zhang J, Yan S, Li X, Lin Q, Kwong S and Liang C 2019 ACM Comput. Surv. 52 1
[5] Searle B, Müller M, Carell T and Kellett A 2023 Chem. Int. Ed. 62 e202215704
[6] LyuY K, Chen S, Zhao Y, Yuan H X, Zhang C Y, Zhang C Z and Meng Q T 2024 Phys. Chem. Chem. Phys. 26 12552
[7] Lavergne T, Degardin M, Malyshev D A, Quach H T, Dhami K, Ordoukhanian P and Romesberg F E 2013 J. Am. Chem. Soc. 135 5408
[8] Hassan S, Bahar R, Johan M F, Hashim E K M, Abdullah W Z, Esa E, Hamid F S A and Zulkafli Z 2023 Diagnostics 13 373
[9] Xie Y, Chan L Y, Cheung M Y, Li M W and Lam H M 2023 Plant Genome 16 e20316
[10] Chen F, Gaucher E A, Leal N A, Hutter D, Havemann S A, Govindarajan S, Ortlund E A and Benner S A 2010 Biochemistry 107 1948
[11] Dijk E L, Jaszczyszyn Y, Naquin D and Thermes C 2018 Trends Genet. 34 666
[12] Eid J, Fehr A, Gray J, et al. 2009 Science 323 133
[13] Choy L Y L, Peng W L, Jiang P Y, Cheng S H, Yu S C Y, Shang H M, Tse O Y O, Wong J, Wong V W S, Wong G L H, Lam W K J, Chan S L, Chiu RWK, Chan K C A and Lo Y M D 2022 Clin. Chem. 68 1151
[14] Li Z J, Zhou X, Liao D X, Liu R L, Zhao X, Wang J, Zhong Q, Zeng Z, Peng Y Z, Tan Y L and Yang Z C 2023 Front. Cell. Infect. Mi. 13 1180194
[15] Trémeaux P, Latour J, Ranger N, Ferrer V, Harter A, Carcenac R, Boyer P, Demmou S, Nicot F, Raymond S and Izopet J 2023 Microbiology Spectrum 11 4
[16] Levene M J, Korlach J, Turner S W, Foquet M, Craighead H G and Webb W W 2003 Science 299 682
[17] Foquet M, Samiee K T, Kong X, Chauduri B P, Lundquist P M, Turner S W, Freudenthal J and Roitman D B 2008 J. Appl. Phys. 103 034301
[18] Wang Y, Sischka A, Walhorn V, Tonsing K and Anselmetti D 2016 Biophys. J. 111 1604
[19] Xu W, Chan K M and Kool E T 2017 Nat. Chem. 9 1043
[20] Kong JW, Dou S X, LiW, Li Hui andWang P Y 2023 Chin. Phys. Lett. 40 078701
[21] Zhang L B, Kong X M, Zheng M M and Wang M 2017 J. Mol. Graph. Model. 77 339
[22] Ludford P T, Yang S, Bucardo M S and Tor Y 2022 Chem. Eur. J. 28 e202104472
[23] Jung J W, Edwards S K and Kool E T 2013 ChemBioChem 14 440
[24] Parvin R, Jia Q, Ma J B, Xu C H, Lu Y, Ye F F and Li M 2022 Chin. Phys. B 31 088701
[25] Chen Y H, Kong D R, Qiu L P, Wu Y G, Dai C H, Luo S, Huang Z P, Lin Q Y, Chen H, Xie S T, Geng L, Zhao J, TanWH, Liu Y Q andWei D C 2023 Anal. Chem. 95 1446
[26] Edwards S K, Ono T, Wang S, Jiang W, Franzini R M, Jung J W, Chan K M and Kool E T 2015 ChemBioChem 16 1637
[27] Wang R W, Jin C, Zhu X Y, Zhou L Y, Xuan W J, Liu Y, Liu Q L and Tan W H 2017 J. Am. Chem. Soc. 139 9104
[28] Abdullah R, Xie S T, Wang R W, Jin C, Du Y L, Fu T, Li J, Tan J, Zhang L L and Tan W H 2019 Anal. Chem. 91 2074
[29] Schmidt O P, Mata G and Luedtke N W 2016 J. Am. Chem. Soc. 138 14733
[30] Duan L J, Zhang X, Zhao Y, Meng Q T and Zhang C Z 2023 Phys. Chem. Chem. Phys. 25 3859
[31] Tanpure A A, Pawar M G and Srivatsan S G 2013 Isr. J. Chem. 53 366
[32] Liu H B, Gao J M, Lystranne M, Y David S and Eric T K 2004 J. Am. Chem. Soc. 126 1102
[33] Wilhelmsson L M, Sandin P, Holmén A, Albinsson B, Lincoln P and Nordén B 2003 J. Phys. Chem. B 107 9094
[34] Frisch M J, Trucks G W, Schlegel H B, et al. 2013 Gaussian 16 Revision A.03 (Gaussian Inc)
[35] Humphrey W, Dalke A and Schulten K 1996 J. Mol. Graph. 14 33
[36] Lu T and Chen F W 2012 J. Comput. Chem. 33 580
[37] Goerigk L, Hansen A, Bauer C, Ehrlich S, Najibi A and Grimme S 2017 Phys. Chem. Chem. Phys. 19 32184
[38] Becke A D 1993 J. Chem. Phys. 98 5648
[39] Zhao G J, YangY F, Zhang C Y, Song Y Z and Li Y Q 2021 J. Lumin. 230 117741
[40] Kumar A and Sevilla M D 2008 J. Am. Chem. Soc. 130 2130
[41] Qi Y T, Wang Y, Tang Z, Liu J Y, Hou Y M, Gao Z Q, Tian J and Fei X 2020 J. Mol. Liq. 314 113614
[42] Cossi M, Scalmani G, Rega N and Barone V 2022 J. Chem. Phys. 117 43
[43] Tomasi J, Mennucci B and Cammi R 2005 Chem. Rev. 105 2999
[44] Zhao J F, Jin B and Tang Z 2022 Phys. Chem. Chem. Phys. 24 27660
[45] Yang Y F, Shi W, Chen Y P, Ma F C and Li Y Q 2021 J. Lumin. 229 117698
[46] Grimme S, Antony J, Ehrlich S and Krieg H 2010 J. Chem. Phys. 132 154104
[47] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[48] Zhang Y K and Yang W T 1997 Phys. Rev. Lett. 78 1396
[49] Carlo A and Vincenzo B 1999 J. Chem. Phys. 110 6158
[50] Duan L J, Zhao Y, Zhang X, Cui X X, Meng Q T and Zhang C Z 2022 Spectrochim. Acta A 282 121675
[51] Green J A, Jouybari M Y, Aranda D, Improta R and Santoro F 2021 Molecules 26 1743
[52] Sandin P, Wilhelmsson L M, Lincoln P, Powers V E C, Brown T and Albinsson B 2005 Nucleic. Acids. Res. 33 5019
[53] Sandin P, Lincoln P, Brown T and Wilhelmsson L M 2007 Nat. Protoc. 2 615
[54] Moliner F, Bufi F N and Vendrell M 2024 Curr. Opin. Chem. Biol. 80 102458
[55] Callis P R 1983 Ann. Rev. Phys. Chern. 34 329
[56] Barzilai I L, Bulatov V, Gridin V V and Schechter I 2004 Anal. Chim. Acta 501 151
[57] Lukes V, Aquino A and Lischka H 2005 J. Phys. Chem. A 109 10232
[58] Cao R F, Naivar M A, Wilder M and Houston J P 2014 Cytom part A 85 999
[59] Shin D, Sinkeldam R W and Tor Y 2011 J. Am. Chem. Soc. 133 14912
[60] Park S, Otomo H, Zhenga L and Sugiyama H 2014 Chem. Commun. 50 1573
[61] Duijneveldt F B, Duijneveldt R J G C M and Lenthe J H 1994 Chem. Rev. 94 1873
[62] Lu T and Chen Q X 2021 Chem. Methods 1 231
[63] Johnson E R, Keinan S, Sánchez P M, García J C, Cohen A J and Yang W 2010 J. Am. Chem. Soc. 132 6498
[64] Zhan H B, Wang Y, Li Z X, Tang Z, Tian J and Fei X 2021 J. Phys. Chem. A 125 2866
[1] Theoretical investigation on the fluorescent sensing mechanism for recognizing formaldehyde: TDDFT calculation and excited-state nonadiabatic dynamics
Yunfan Yang(杨云帆), Lujia Yang(杨璐佳), Fengcai Ma(马凤才), Yongqing Li(李永庆), and Yue Qiu(邱岳). Chin. Phys. B, 2023, 32(5): 057801.
[2] Computational design of ratiometric two-photon fluorescent Zn2+ probes based on quinoline and di-2-picolylamine moieties
Zhe Shao(邵哲), Wen-Ying Zhang(张纹莹), and Ke Zhao(赵珂). Chin. Phys. B, 2022, 31(5): 053302.
[3] Responsive mechanism and coordination mode effect of a bipyridine-based two-photon fluorescent probe for zinc ion
Han Zhang(张瀚), Zhe Shao(邵哲), Ke Zhao(赵珂). Chin. Phys. B, 2020, 29(8): 083304.
[4] Facile and controllable synthesis of molybdenum disulfide quantum dots for highly sensitive and selective sensing of copper ions
Xue Li(李雪), Da-Wei He(何大伟), Yong-Sheng Wang(王永生), Yin Hu(胡音), Xuan Zhao(赵宣), Chen Fu(付晨), Jing-Yan Wu(吴静燕). Chin. Phys. B, 2018, 27(5): 056104.
[5] Responsive mechanism and molecular design of di-2-picolylamine-based two-photon fluorescent probes for zinc ions
Mei-Yu Zhu(朱美玉), Ke Zhao(赵珂), Jun Song(宋军), Chuan-Kui Wang(王传奎). Chin. Phys. B, 2018, 27(2): 023302.
[6] A biosensor based on graphene nanoribbon with nanopores: a first-principles devices-design
Ouyang Fang-Ping(欧阳方平), Peng Sheng-Lin(彭盛霖), Zhang Hua(张华), Weng Li-Bo(翁立波), and Xu Hui(徐慧). Chin. Phys. B, 2011, 20(5): 058504.
No Suggested Reading articles found!