Quintessence anisotropic stellar models in quadratic and Born-Infeld modified teleparallel Rastall gravity
Allah Ditta1, Tiecheng Xia(夏铁成)1,†, Irfan Mahmood2, and Asif Mahmood3,‡
1 Department of Mathematics, Shanghai University and Newtouch Center for Mathematics of Shanghai University, Shanghai 200444, China; 2 Centre for High Energy Physics, University of the Punjab, Lahore, Pakistan; 3 College of Engineering, Chemical Engineering Department, King Saud University Riyadh, Saudi Arabia
Abstract This study aims to discuss anisotropic solutions that are spherically symmetric in the quintessence field, which describe compact stellar objects in the modified Rastall teleparallel theory of gravity. To achieve this goal, the Krori and Barua arrangement for spherically symmetric components of the line element is incorporated. We explore the field equations by selecting appropriate off-diagonal tetrad fields. Born-Infeld function of torsion f(T)=β√λT+1-1 and power law form h(T)=δTn are used. The Born-Infeld gravity was the first modified teleparallel gravity to discuss inflation. We use the linear equation of state pr=ξρ to separate the quintessence density. After obtaining the field equations, we investigate different physical parameters that demonstrate the stability and physical acceptability of the stellar models. We use observational data, such as the mass and radius of the compact star candidates PSRJ 1416-2230, Cen X-3, & 4U 1820-30, to ensure the physical plausibility of our findings.
Received: 02 August 2023
Revised: 31 August 2023
Accepted manuscript online: 19 September 2023
PACS:
02.30.Jr
(Partial differential equations)
Fund: Allah Ditta and Xia Tiecheng acknowledge this paper to be funded by the National Natural Science Foundation of China (Grant No. 11975145). Asif Mahmood would like to acknowledge Researchers Supporting Project Number (RSP2024R43), King Saud University, Riyadh, Saudi Arabia.
Allah Ditta, Tiecheng Xia(夏铁成), Irfan Mahmood, and Asif Mahmood Quintessence anisotropic stellar models in quadratic and Born-Infeld modified teleparallel Rastall gravity 2024 Chin. Phys. B 33 030204
[1] Riess A G, Filippenko A V, Challis P, et al. 1998 The Astronomical Journal116 1009 [2] Aldrovandi R and Pereira J G 2012 Teleparallel gravity: an introduction, Vol. 173 (Springer Science & Business Media) [3] Sotiriou T P and Faraoni V 2010 Rev. Mod. Phys.82 451 [4] Bamba K, Capozziello S, Nojiri S and Odintsov S D 2012 Astrophysics and Space Science342 155 [5] Einstein A 1925 Sitzungsber. Pruess. Akad. Wiss 414 [6] Capozziello S and De Laurentis M 2011 Physics Reports509 167 [7] Faraoni V and Sotiriou T P 2010 Rev. Mod. Phys82 451 [8] Nojiri S and Odintsov S 2007 Int. J. Geom. Meth. Mod. Phys4 16 [9] Famaey B and McGaugh S 2012 arXiv preprint arXiv:1112.3960 [10] Clifton T, Ferreira P G, Padilla A and Skordis C 2012 Physics Reports513 1 [11] Ferraro R and Fiorini F 2008 Phys. Rev. D78 124019 [12] Fiorini F and Ferraro F 2009 International Journal of Modern Physics A24 1686 [13] Li B, Sotiriou T P and Barrow J D 2011 Phys. Rev. D83 064035 [14] Cardone V F, Radicella N and Camera S 2012 Phys. Rev. D85 124007 [15] Rastall P 1972 Phys. Rev. D6 3357 [16] Rastall P 1976 Canadian J. Phys.54 66 [17] Moradpour H, Heydarzade Y, Darabi F and Salako I G 2017 Euro. Phys. J. C77 1 [18] Lin K and Qian W L 2019 Chin. Phys. C43 083106 [19] Saaidi K and Nazavari N 2020 Physics of the Dark Universe28 100464 [20] Nazavari N, Saaidi K and Mohammadi A 2023 General Relativity and Gravitation55 45 [21] Visser M 2018 Phys. Lett. B782 83 [22] Darabi F, Atazadeh K and Heydarzade Y 2018 Euro. Phys. J. Plus133 249 [23] Darabi F, Moradpour H, Licata I, Heydarzade Y and Corda C 2018 Euro. Phys. J. C78 1 [24] Hansraj S, Banerjee A and Channuie P 2019 Annals of Physics400 320 [25] Javed F, Mustafa G, Mumtaz S and Atamurotov F 2023 Nuclear Physics B990 116180 [26] Javed F, Sadiq S, Mustafa G and Hussain I 2022 Physica Scripta97 125010 [27] Javed F, Mumtaz S, Mustafa G, Hussain I and Liu W M 2022 Euro. Phys. J. C82 825 [28] Mustafa G, Gao X and Javed F 2022 Fortschritte der Physik70 2200053 [29] Maurya S, Errehymy A, Govender M, Mustafa G, Al-Harbi N and Abdel-Aty A H 2023 Euro. Phys. J. C83 348 [30] Sharif M and Gul M Z 2023 General Relativity and Gravitation55 10 [31] Kumar M and Kumar J 2023 Physica Scripta98 035012 [32] Jeans J 1922 Mon. Not. R. Astron. Soc. 122 [33] Herrera L and Santos N O 1997 Physics Reports286 53 [34] Mak M and Harko T 2002 Chinese Journal of Astronomy and Astrophysics2 248 [35] Horvat D, Ilijić S and Marunović A 2010 Classical and Quantum Gravity28 025009 [36] Dev K and Gleiser M 2003 arXiv preprint gr-qc/0303077 [37] Bowers R L and Liang E 1974 Astrophysical Journal188 657 [38] Ruderman M 1972 Annual Review of Astronomy and Astrophysics10 427 [39] Maurya S, Gupta Y, Ray S and Deb D 2017 Euro. Phys. J. C77 1 [40] Zubair M, Ditta A and Waheed S 2021 Euro. Phys. J. Plus136 508 [41] Zubair M, Ditta A and Waheed S 2022 New Astronomy92 101735 [42] Ditta A, Tiecheng X, Errehymy A, Mustafa G and Maurya S 2023 Euro. Phys. J. C83 254 [43] Ditta A, Errehymy A, Tiecheng X, Mustafa G, Alrebdi H and Abdel-Aty A H 2022 Euro. Phys. J. Plus137 933 [44] Ditta A and Xia T 2022 Chin. J. Phys.79 57 [45] Tamanini N and Boehmer C G 2012 Phys. Rev. D86 044009 [46] Boehmer C G, Mussa A and Tamanini N 2011 Classical and Quantum Gravity28 245020 [47] Ruggiero M L and Radicella N 2015 Phys. Rev. D91 104014 [48] Bahamonde S, Flathmann K and Pfeifer C 2019 Phys. Rev. D100 084064 [49] Hohmann M, Järv L, Krššák M and Pfeifer C 2019 Phys. Rev. D100 084002 [50] Krššák M, Van Den Hoogen R, Pereira J, B" ohmer C and Coley A 2019 Classical and Quantum Gravity36 183001 [51] Nashed G and Saridakis E N 2019 Classical and Quantum Gravity36 135005 [52] Daouda M H, Rodrigues M E and Houndjo M 2012 Phys. Lett. B715 241 [53] Jusufi K, Capozziello S, Bahamonde S and Jamil M 2022 Euro. Phys. J. C82 1018 [54] Zubair M and Abbas G 2016 Astrophysics and Space Science361 27 [55] Krori K and Barua J 1975 J. Phys. A: Math. Gen.8 508 [56] Biswas S, Deb D, Ray S and Guha B 2021 Annals of Physics428 168429 [57] Zubair M, Ditta A, Abbas G and Saleem R 2021 Chin. Phys. C45 085102 [58] Rahaman F, Sharma R, Ray S, Maulick R and Karar I 2012 Euro. Phys. J. C72 1 [59] Roupas Z and Nashed G G 2020 Euro. Phys. J. C80 1 [60] Nojiri S and Odintsov S G 2009 Phys. Lett. B676 94 [61] Sharif M and Javed F 2019 Chin. J. Phys.61 262 [62] Thirukkanesh S and Maharaj S 2008 Classical and Quantum Gravity25 235001 [63] Singh K N, Govender M, Hansraj S and Rahaman F 2022 Annalen der Physik534 2100596 [64] Abbas G, Momeni D, Aamir Ali M, Myrzakulov R and Qaisar S 2015 Astrophysics and Space Science357 1 [65] Bhar P 2014 Astrophysics and Space Science354 457 [66] Goswami R, Nzioki A M, Maharaj S D and Ghosh S G 2014 Phys. Rev. D90 084011 [67] Kiselev V 2003 Classical and Quantum Gravity20 1187 [68] Toledo J D M and Bezerra V 2018 Euro. Phys. J. C78 1 [69] Tolman R C 1939 Phys. Rev.55 364 [70] Oppenheimer J R and Volkoff G M 1939 Phys. Rev.55 374 [71] Abreu H, Hernández H and Núnez L A 2007 Classical and Quantum Gravity24 4631 [72] Andréasson H 2008 Journal of Differential Equations245 2243 [73] Buchdahl H A 1959 Phys. Rev.116 1027
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.