PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES |
Prev
Next
|
|
|
Effect of sharp vacuum-plasma boundary on the electron injection and acceleration in a few-cycle laser driven wakefield |
Guo-Bo Zhang(张国博)1,†, Song Liu(刘松)1, De-Bin Zou(邹德滨)2, Ye Cui(崔野)1, Jian-Peng Liu(刘建鹏)1, Xiao-Hu Yang(杨晓虎)1,3,‡, Yan-Yun Ma(马燕云)3,4, and Fu-Qiu Shao(邵福球)2 |
1 Department of Nuclear Science and Technology, National University of Defense Technology (NUDT), Changsha 410073, China; 2 Department of Physics, National University of Defense Technology, Changsha 410073, China; 3 Collaborative Innovation Center of IFSA (CICIFSA), Shanghai Jiao Tong University, Shanghai 200240, China; 4 College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China |
|
|
Abstract The electron injection and acceleration driven by a few-cycle laser with a sharp vacuum-plasma boundary have been investigated through three-dimensional (3D) particle-in-cell simulations. It is found that an isotropic boundary impact injection (BII) first occurs at the vacuum-plasma boundary, and then carrier-envelope-phase (CEP) shift causes the transverse oscillation of the plasma bubble, resulting in a periodic electron self-injection (SI) in the laser polarization direction. It shows that the electron charge of the BII only accounts for a small part of the total charge, and the CEP can effectively tune the quality of the injected electron beam. The dependences of laser intensity and electron density on the total charge and the ratio of BII charge to the total charge are studied. The results are beneficial to electron acceleration and its applications, such as betatron radiation source.
|
Received: 24 May 2023
Revised: 01 June 2023
Accepted manuscript online: 07 June 2023
|
PACS:
|
52.38.Kd
|
(Laser-plasma acceleration of electrons and ions)
|
|
52.65.Rr
|
(Particle-in-cell method)
|
|
52.35.Mw
|
(Nonlinear phenomena: waves, wave propagation, and other interactions (including parametric effects, mode coupling, ponderomotive effects, etc.))
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12005297, 12175309, 12175310, 11975308, and 12275356), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA25050200), the Research Project of NUDT (Grant No. ZK21-12), and the Key Laboratory Foundation of Laser Plasma of Ministry of Education. De-Bin Zou also acknowledges the financial support from the NUDT Young Innovator Awards (Grant No. 20190102) and Outstanding Young Talents. |
Corresponding Authors:
Guo-Bo Zhang, Xiao-Hu Yang
E-mail: zgb830@163.com;xiaohu.yang@aliyun.com
|
Cite this article:
Guo-Bo Zhang(张国博), Song Liu(刘松), De-Bin Zou(邹德滨), Ye Cui(崔野), Jian-Peng Liu(刘建鹏), Xiao-Hu Yang(杨晓虎), Yan-Yun Ma(马燕云), and Fu-Qiu Shao(邵福球) Effect of sharp vacuum-plasma boundary on the electron injection and acceleration in a few-cycle laser driven wakefield 2023 Chin. Phys. B 32 095202
|
[1] Esarey E, Schroeder C B and Leemans W P 2009 Rev. Mod. Phys. 81 1229 [2] Pukhov A and Meyer-ter-Vehn J 2002 Appl. Phys. B 74 355 [3] Lu W, Huang C, Zhou M, Tzoufras M, Tsung F S, Mori W B and Katsouleas T 2006 Phys. Plasmas 13 056709 [4] Zhang G B, Chen M, Schroeder C B, Luo J, Zeng M, Li F Y, Yu L L, Weng S M, Sheng Z M, Ma Y Y, Yu T P and Esarey E 2016 Phys. Plasmas 23 033114 [5] Zhang G B, Hafz N A M, Ma Y Y, Qian L J, Shao F Q and Sheng Z M 2016 Chin. Phys. Lett. 33 095202 [6] Geng P F, Chen M, An X Y, Liu W Y, Zhu X Z, Li J L, Li B Y and Sheng Z M 2023 Chin. Phys. B 32 044101 [7] Gordienko S and Pukhov A 2005 Phys. Plasmas 12 043109 [8] Pukhov A and Gordienko S 2006 Phil. Trans. R. Soc. A 364 623 [9] Li A, Yu J Q, Chen Y Q and Yan X Q 2020 Acta Phys. Sin. 69 019501 (in Chinese) [10] Rousse A, Phuoc K T, Shah R, Pukhov A, Lefebvre E, Malka V, Kiselev S, Burgy F, Rousseau J P, Umstadter D and Hulin D 2004 Phys. Rev. Lett. 93 135005 [11] Chen M, Luo J, Li F Y, Liu F, Sheng Z M and Zhang J 2016 Light Sci. Appl. 5 e16015 [12] Feng J, Li Y F, Wang J G, Li D Z, Li F, Yan W C, Wang W M and Chen L M 2019 Sci. Rep. 9 2531 [13] Zhang G, Chen M, Yang X, Liu F, Weng S, Ma Y, Zou D, Yu T, Shao F and Sheng Z 2020 Opt. Express 28 29927 [14] Wang W T, Feng K, Ke L, Yu C H, Xu Y, Qi R, Chen Y, Qin Z Y, Zhang Z J, Fang M, Liu J Q, Jiang K N, Wang H, Wang C, Yang X J, Wu F X, Leng Y X, Liu J S, Li R X and Xu Z Z 2021 Nature 595 516 [15] Xu X L, Li F, Tsung F S, Miller K, Yakimenko V, Hogan M J, Joshi C and Mori W B 2022 Nat. Commun. 13 3364 [16] Gonsalves A J, Nakamura K, Daniels J, Benedetti C, Pieronek C, Raadt T C H, Steinke S, Bin J H, Bulanov S S, Tilborg J, Geddes C G R, Schroeder C B, TóTh C, Esarey E, Swanson K, FanChiang L, Bagdasarov G, Bobrova N, Gasilov V, Korn G, Sasorov P and Leemans W P 2019 Phys. Rev. Lett. 122 84801 [17] Ke L T, Feng K, Wang W T, Qin Z Y, Yu C H, Wu Y, Chen Y, Qi R, Zhang Z J, Xu Y, Yang X J, Leng Y X, Liu J S, Li R X and Xu Z Z 2021 Phys. Rev. Lett. 126 214801 [18] Guénot D, Gustas D, Vernier A, Beaurepaire B, Böhle F, Bocoum M, Lozano M, Jullien A, LopezMartens R, Lifschitz A and Faure J 2017 Nat. Photon. 11 293 [19] Ouillé M, Vernier A, Böhle F, Bocoum M, Jullien A, Lozano M, Rousseau J P, Cheng Z, Gustas D, Blumenstein A, Simon P, Haessler S, Faure J, Nagy T and Martens R L 2020 Light Sci. Appl. 9 47 [20] Zhu X L, Liu W Y, Chen M, Weng S M, He F, Assmann R, Sheng Z M and Zhang J 2021 Phys. Rev. Appl. 15 44039 [21] Zhang G B, Chen M, Zou D B, Zhu X Z, Li B Y, Yang X H, Liu F, Yu T P, Ma Y Y and Sheng Z M 2022 Phys. Rev. Appl. 17 24051 [22] Papp D, Lécz Z, Kamperidis C and Hafz N A M 2021 Plasma Phys. Control Fusion 63 065019 [23] Xu S, Zhang J, Tang N, Wang S C, Lu W and Li Z Y 2020 AIP. Adv. 10 095310 [24] Faure J, Gustas D, Guénot D, Vernier A, Böhle F, Ouillé M, Haessler S, Lopez-Martens R and Lifschitz A 2019 Plasma Phys. Control. Fusion 61 014012 [25] Kim J, Wang T, Khudik V and Shvets G 2021 Phys. Rev. Lett. 127 164801 [26] Huijts J, Andriyash I A, Rovige L, Vernier A and Faure J 2021 Phys. Plasmas 28 043101 [27] Lai P W, Liu K N, Tran D K, Chou S W, Chu H H, Chen S H, Wang J and Lin M W 2023 Phys. Plasmas 30 010703 [28] Kalmykov S, Yi S A, Khudik V and Shvets G 2009 Phys. Rev. Lett. 103 135004 [29] Eremin V, Malkov Y, Korolikhin V, Kiselev A, Skobelev S, Stepanov A and Andreev N 2012 Phys. Plasmas 19 093121 [30] Rovige L, Huijts J, Andriyash I, Vernier A, Tomkus V, Girdauskas V, Raciukaitis G, Dudutis J, Stankevic V, Gecys P, Ouille M, Cheng Z, Lopez-Martens R and Faure J 2020 Phys. Rev. Accel. Beams 23 093401 [31] Chen M, Sheng Z M, Ma Y Y and Zhang J 2006 J. Appl. Phys. 99 56109 [32] Zeng M, Chen M, Yu L L, Mori W B, Sheng Z M, Hidding B, Jaroszynski D A and Zhang J 2015 Phys. Rev. Lett. 114 084801 [33] Ma Y Y, Kawata S, Yu T P, Gu Y Q, Sheng Z M, Yu M Y, Zhuo H B, Liu H J, Yin Y, Takahashi K, Xie X Y, Liu J X, Tian C L and Shao F Q 2012 Phys. Rev. E 85 046403 [34] Shen B F, Li Y L, Nemeth K, Shang H R, Chae Y, Soliday R, Crowell R, Frank E, Gropp W and Cary J 2007 Phys. Plasmas 14 053115 [35] Wu H C, Xie B S and Yu M Y 2010 Chin. Phys. Lett. 27 105201 [36] Zhu X Z, Liu W Y and Chen M 2020 Acta Phys. Sin. 69 035201 (in Chinese) [37] Xu H, Yu W, Yu M Y, Wong A Y, Sheng Z M, Murakami M and Zhang J 2012 Appl. Phys. Lett. 100 144101 [38] Yang X H, Dieckmann M E, Sarri G and Borghesi M 2012 Phys. Plasmas 19 113110 [39] Yu L L, Esarey E, Schroeder C B, Vay J L, Benedetti C, Geddes C G R, Chen M and Leemans W P 2014 Phys. Rev. Lett. 112 125001 [40] Kim G H, Kim C, Hafz N, Kim J U, Lee H J and Suk H 2003 30$th International Conference on Plasma Science, Jeju, South Korea, June 2-5, 2003 p. 364 [41] Fourmaux S, Ta Phuoc K, Lassonde P, Corde S, Lebrun G, Malka V, Rousse A and Kieffer 2012 Appl. Phys. Lett. 101 111106 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|