Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(7): 075201    DOI: 10.1088/1674-1056/ac8ce4
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Experimental research based on a C-band compact transit-time oscillator with a novel diode loading an embedded soft magnetic material and shielding structure

Yufang He(何宇放), Juntao He(贺军涛), Junpu Ling(令钧溥), Lei Wang(王蕾), and Lili Song(宋莉莉)
College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China
Abstract  In order to reduce the external magnetic field and improve the conversion efficiency of high-power microwave generation devices with low external magnetic field, a novel diode with an embedded soft magnetic and shielding structure is proposed. The soft magnetic material is designed to enhance the local magnetic field in the diode region. Moreover, the diode applies a shielding structure which can reduce the radial electric field. From simulation research, it is found that the emission and transmission quality of the electron beam with low magnetic field is greatly improved when loading this diode. Through simulation research, it is verified that the diode can increase the conversion efficiency of the transit-time oscillator (TTO) from 30% to 36.7%. In our experimental study, under the conditions of a diode voltage of 540 kV and a current of 10.5 kA, the output microwave power is 1.51 GW when loading the novel diode and the microwave frequency is 4.27 GHz when an external guiding magnetic field of 0.3 T is applied. The corresponding conversion efficiency is improved from 20.0% to 26.6%, which is 6.6% higher than that of a device loaded with a conventional diode. Our experiments have verified that this novel diode can effectively improve the conversion efficiency of high-power microwave sources operating with low magnetic field, and contribute to the miniaturization and compactness of high-power microwave devices.
Keywords:  high-power microwave      soft magnetic material      shielding structure      transit-time oscillator  
Received:  15 June 2022      Revised:  09 August 2022      Accepted manuscript online:  26 August 2022
PACS:  52.35.Fp (Electrostatic waves and oscillations (e.g., ion-acoustic waves))  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61701516). We would like to show our deepest gratitude to the colleagues that offered us help in our research.
Corresponding Authors:  Junpu Ling     E-mail:  lingjunpu@163.com

Cite this article: 

Yufang He(何宇放), Juntao He(贺军涛), Junpu Ling(令钧溥), Lei Wang(王蕾), and Lili Song(宋莉莉) Experimental research based on a C-band compact transit-time oscillator with a novel diode loading an embedded soft magnetic material and shielding structure 2023 Chin. Phys. B 32 075201

[1] Deng R J, Ge X J, Dang F C, Wang L, Chi H, Zhang P, He J T and Zhang J 2021 IEEE Trans. Plasma Sci. 50 656
[2] Deng X B, He J T, Ling J P, Deng B F, Song L L and Xu W L 2020 AIP Adv. 10 115114
[3] Zhang J, Zhong H H, Shu T and Yang J H 2003 Chin. Phys. Lett. 20 2265
[4] Zhang J, Zhong H H, Shu T, Luo L and Wang Y 2004 Chin. Phys. Lett. 21 2479
[5] Ling J P, Zhang J D, He J T, Wang L and Deng B F 2014 Rev. Sci. Instrum. 85 084702
[6] Ling J P, He J T, Zhang J D, Jiang T and Song L L 2014 Laser Part. Beams 32 295
[7] Wang D Y, Teng Y, Li S, Chen C H, Liu W Y, Su J C, Zhang L G, Cheng J, Du Z Y and Gao L 2021 IEEE Trans. Electron. Devices 68 3015
[8] Wang D Y, Teng Y, Li S, Shi Y C, Wu P, Deng Y Q, Miao T Z, Song Z M and Chen C H 2019 IEEE Trans. Electron. Devices 67 314
[9] Wang H D, Xiao R Z, Chen C H, He C X, Shi Y C, Huang W H and Fan R Y 2021 IEEE Trans. Electron. Devices 68 3045
[10] Wang H D, Xiao R Z, Chen C H, Shi Y C and Zhang G S 2020 Phys. Plasmas 27 043101
[11] Wang H D, Xiao R Z, Shi Y C, Zhang G S, Sun J, Chen C H, Huang W H and Fan R Y 2020 IEEE Access 8 164972
[12] Wu J, Fang Z C, Xie H Q and Li Z H 2013 Chin. Phys. C 37 047002
[13] Xiao R Z, Shi Y C, Wang H D, Zhang G S, Gui Y Y, Song Z M, Bai X C, Zhang Y C and Sun J 2020 Phys. Plasmas 27 043102
[14] Yang D W, Chen C H, Teng Y, Li S, Li X Z, Tan W B, Zhu X X, Zhang L G, Sun J and Su J C 2021 Phys. Plasmas 28 053101
[15] Wu Y and Zhou Z G 2019 Acta Phys. Sin. 68 194101 (in Chinese)
[16] Zhang J, Zhong H H, Jin Z X, Shu T, Cao S G and Zhou S Y 2009 IEEE Trans. Plasma Sci. 37 1552
[17] Cao Y B, He J T, Zhang J D and Ling J P 2012 Laser Part. Beams 30 613
[18] Deng B F, He J T and Ling J P 2020 IEEE Trans. Plasma Sci. 48 4350
[19] Gao X F, Song L L, Zhang H R, Wang L, Ling J P and He J T 2021 Rev. Sci. Instrum. 92 094704
[20] He J T, Cao Y B, Zhang J D and Ling J P 2013 IEEE Trans. Plasma Sci. 41 847
[21] He J T, Zhong H H, Qian B L and Liu Y G 2004 Chin. Phys. Lett. 21 1302
[22] Ling J P, He J T, Zhang J D, Jiang T and Hu Y 2014 Phys. Plasmas 21 093107
[23] Song L L, He J T and Ling J P 2017 AIP Adv. 7 105302
[24] Xu W L, He J T, Ling J P, Song L L, Deng B F, Dai O Z X and Ge X J 2019 Chin. Phys. B 28 085201
[25] Yang W Y and Ding W 2002 Phys. Plasmas 9 662
[26] Deng X B, He J T, Ling J P, Deng B F, Song L L, Yang F X and Xu W L 2020 Chin. Phys. B 29 095205
[27] Yang J H, Zhang Y Z, Shu T, Zhang J D and Wang Y 2005 High Power Laser Part. Beams 17 412 (in Chinese)
[1] High performance carrier stored trench bipolar transistor with dual shielding structure
Jin-Ping Zhang(张金平), Hao-Nan Deng(邓浩楠), Rong-Rong Zhu(朱镕镕), Ze-Hong Li(李泽宏), and Bo Zhang(张波). Chin. Phys. B, 2023, 32(3): 038501.
[2] Damage effects and mechanism of the silicon NPN monolithic composite transistor induced by high-power microwaves
Hui Li(李慧), Chang-Chun Chai(柴常春), Yu-Qian Liu(刘彧千), Han Wu(吴涵), Yin-Tang Yang(杨银堂). Chin. Phys. B, 2018, 27(8): 088502.
[3] Reduced technique for modeling electromagnetic immunity on braid shielding cable bundles
Pei Xiao(肖培), Ping-An Du(杜平安), Bao-Lin Nie(聂宝林), Dan Ren(任丹). Chin. Phys. B, 2017, 26(9): 094102.
[4] Serrated magnetic properties in metallic glass by thermal cycle
Myong-Chol Ri(李明哲), Sajad Sohrabi, Da-Wei Ding(丁大伟), Bang-Shao Dong(董帮少), Shao-Xiong Zhou(周少雄), Wei-Hua Wang(汪卫华). Chin. Phys. B, 2017, 26(6): 066101.
[5] Investigation on latch-up susceptibility induced by high-power microwave in complementary metal-oxide-semiconductor inverter
Yu-Hang Zhang(张宇航), Chang-Chun Chai(柴常春), Xin-Hai Yu(于新海), Yin-Tang Yang(杨银堂), Yang Liu(刘阳), Qing-Yang Fan(樊庆扬), Chun-Lei Shi(史春蕾). Chin. Phys. B, 2017, 26(2): 028501.
[6] All-dielectric frequency selective surface design based on dielectric resonator
Zheng-Bin Wang(王正斌), Chao Gao(高超), Bo Li(李波), Zhi-Hang Wu(吴知航), Hua-Mei Zhang(张华美), Ye-Rong Zhang (张业荣). Chin. Phys. B, 2016, 25(6): 068101.
[7] Short-pulse high-power microwave breakdown at high pressures
Zhao Peng-Cheng (赵朋程), Liao Cheng (廖成), Feng Ju (冯菊). Chin. Phys. B, 2015, 24(2): 025101.
[8] Microwave damage susceptibility trend of bipolar transistor as a function of frequency
Ma Zhen-Yang (马振洋), Chai Chang-Chun (柴常春), Ren Xing-Rong (任兴荣), Yang Yin-Tang (杨银堂), Chen Bin (陈斌), Song Kun (宋坤), Zhao Ying-Bo (赵颖博). Chin. Phys. B, 2012, 21(9): 098502.
[9] Excellent soft magnetic properties realized in FeCoN thin films
Zhang Lu-Ran(张璐然), LŰ Hua(吕华), Liu Xi(刘曦), Bai Jian-Min(白建民), and Wei Fu-Lin(魏福林) . Chin. Phys. B, 2012, 21(3): 037502.
[10] Investigation of an X-band magnetically insulated transmission line oscillator
Fan Yu-Wei(樊玉伟), Zhong Hui-Huang(钟辉煌), Li Zhi-Qiang(李志强), Shu Ting(舒挺), Yang Han-Wu(杨汉武), Yang Jian-Hua(杨建华), Wang Yong(王勇), Luo Ling(罗玲), and Zhao Yan-Song(赵延宋). Chin. Phys. B, 2008, 17(5): 1804-1808.
No Suggested Reading articles found!