Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(4): 040207    DOI: 10.1088/1674-1056/ac9cb9
GENERAL Prev   Next  

Meshfree-based physics-informed neural networks for the unsteady Oseen equations

Keyi Peng(彭珂依)1,†, Jing Yue(岳靖)2,‡, Wen Zhang(张文)2,§, and Jian Li(李剑)1,¶
1 School of Mathematics and Data Science, Shaanxi University of Science and Technology, Xi'an 710021, China;
2 School of Electrical and Control Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
Abstract  We propose the meshfree-based physics-informed neural networks for solving the unsteady Oseen equations. Firstly, based on the ideas of meshfree and small sample learning, we only randomly select a small number of spatiotemporal points to train the neural network instead of forming a mesh. Specifically, we optimize the neural network by minimizing the loss function to satisfy the differential operators, initial condition and boundary condition. Then, we prove the convergence of the loss function and the convergence of the neural network. In addition, the feasibility and effectiveness of the method are verified by the results of numerical experiments, and the theoretical derivation is verified by the relative error between the neural network solution and the analytical solution.
Keywords:  physics-informed neural networks      the unsteady Oseen equation      convergence      small sample learning  
Received:  06 July 2022      Revised:  08 October 2022      Accepted manuscript online:  21 October 2022
PACS:  02.30.Jr (Partial differential equations)  
  02.60.Cb (Numerical simulation; solution of equations)  
  07.05.Mh (Neural networks, fuzzy logic, artificial intelligence)  
Fund: Project supported in part by the National Natural Science Foundation of China (Grant No. 11771259), Shaanxi Provincial Joint Laboratory of Artificial Intelligence (Grant No. 2022JCSYS05), Innovative Team Project of Shaanxi Provincial Department of Education (Grant No. 21JP013), and Shaanxi Provincial Social Science Fund Annual Project (Grant No. 2022D332).
Corresponding Authors:  Keyi Peng, Jing Yue, Wen Zhang, Jian Li     E-mail:  keyi_2000@163.com;yjing1995@163.com;zw15290229577@163.com;jianli@sust.edu.cn

Cite this article: 

Keyi Peng(彭珂依), Jing Yue(岳靖), Wen Zhang(张文), and Jian Li(李剑) Meshfree-based physics-informed neural networks for the unsteady Oseen equations 2023 Chin. Phys. B 32 040207

[1] Liu X, Li J and Chen Z 2018 J. Comput. Appl. Math 333 442
[2] Li J, He Y and Xu H 2007 Comput. Methods Appl. Mech. Eng. 196 2852
[3] Li J 2019 Numerical methods for the incompressible Navier-Stokes equations (Beijing: Science Press) p. 72
[4] Li J, Bai Y and Zhao X 2022 Modern numerical methods for mathematical physics equations (Beijing: Science Press) p. 56
[5] Li J, Lin X and Chen Z 2021 Finite volume method for the incompressible Navier-Stokes equations (Berlin: Springer) p. 45
[6] Li R, Gao Y, Li J and Chen Z 2018 J. Comput. Appl. Math. 334 111
[7] He Y and Li J 2011 J. Comput. Phys. 231 6790
[8] Li J and Chen Z 2013 Adv. Comput. Math. 38 281
[9] Zhu L, Li J and Chen Z 2011 J. Comput. Appl. Math. 235 2821
[10] Braack E, Burman E and John V 2007 Comput. Methods Appl. Mech. Eng. 196 853
[11] Ding Q and Shang Y 2021 Adv. Appl. Math. Mech. 13 1501
[12] Liu X, Li J and Chen Z 2016 Adv. Comput. Math. 42 1473
[13] Winter M, Schott B and Massing A 2018 Comput. Methods Appl. Mech. Eng. 330 220
[14] Xu C, Shi D and Liao X 2018 Appl. Math. Mech. 39 291
[15] Massing A, Schott B and Wall W A 2018 Comput. Methods Appl. Mech. Eng. 328 262
[16] Berg J and Nyström K 2018 Neurocomputing 317 28
[17] Goswami S, Anitescu C, Chakraborty S and Rabczuk T 2019 arXiv:1907.02531 [stat.ML]
[18] Haghighat E, Raissi M, Moure A, Gomez H and Juanes R 2020 arXiv:2003.02751 [cs.LG]
[19] He Q, Barajas-Solano D, Tartakovsky G and Tartakovsky A M 2020 Adv. Water. Resour. 141 103610)
[20] Tchelepi H A and Fuks O 2020 Journal of Machine Learning for Modeling and Computing 1 19
[21] Sirignano J and Spiliopoulos K 2018 J. Comput. Phys. 375 1339
[22] Raissi M, Perdikaris P and Karniadakis G E 2017 arXiv:1711.10561 [cs.AI]
[23] Raissi M, Perdikaris P and Karniadakis G E 2017 arXiv:1711.10566 [cs.AI]
[24] Berg J and Kaj N 2018 Neurocomputing 317 28
[25] Lagaris I E, Likas A and Fotiadis D I 1998 IEEE Trans. Neural Networks 9 987
[26] Lagaris I E, Likas A and Papageorgiou D G 2000 IEEE Trans. Neural Networks 11 1041
[27] Lee H and Kang I S 1990 J. Comput. Phys. 91 110
[28] Malek A and Shekari B R 2006 Appl. Math. Comput. 183 260
[29] Rudd K 2013 Solving partial differential equations using artificial neural networks (Ph.D. Dessertation, Duke University)
[30] Ling J, Kurzawski A and Templeton J 2016 J. Fluid. Mech. 807 155
[31] Tompson J, Schlachter K and Sprechmann P 2017 International Conference on Machine Learning (PMLR) 70 3424
[32] Pratik C, Adam O and Stanley O 2018 Res. Math. Sci. 5 30
[33] Raissi M, Perdikaris P and Karniadakis G E 2019 J. Comput. Phys. 378 686
[34] Yang M and Foster J T 2022 arXiv:2202.01710 [cs.CE]
[35] Pang G, Lu L and Karniadakis G E 2019 SIAM J. Sci. Comput. 41 A2603
[36] Yang L, Meng X and Karniadakis G E 2021 J. Comput. Phys. 425 109913
[37] Kharazmi E, Zhang Z and Karniadakis G E 2021 Comput. Methods Appl. Mech. Eng. 374 113547
[38] Meng X, Li Z and Zhang D 2020 Comput. Methods Appl. Mech. Eng. 370 113250
[39] Shukla K, Jagtap A D and Karniadakis G E 2021 J. Comput. Phys. 447 110683
[40] Lu L, Meng X and Mao Z 2021 SIAM Rev. 63 208
[41] Cai S, Wang Z and Wang S 2021 J. Heat Transfer 143 1083
[42] Wang R, Utiyama M and Finch A 2018 IEEE-ACM Trans. Audio, Speech, and Language Processing 26 1727
[43] Valan M, Makonyi K and Maki A 2019 Syst. Biol. 68 876
[44] Li Y and Mei F 2021 Multimedia Tools Appl. 80 17391
[1] A meshless algorithm with the improved moving least square approximation for nonlinear improved Boussinesq equation
Yu Tan(谭渝) and Xiao-Lin Li(李小林). Chin. Phys. B, 2021, 30(1): 010201.
[2] Truncated series solutions to the (2+1)-dimensional perturbed Boussinesq equation by using the approximate symmetry method
Xiao-Yu Jiao(焦小玉). Chin. Phys. B, 2018, 27(10): 100202.
[3] A novel stable value iteration-based approximate dynamic programming algorithm for discrete-time nonlinear systems
Yan-Hua Qu(曲延华), An-Na Wang(王安娜), Sheng Lin(林盛). Chin. Phys. B, 2018, 27(1): 010203.
[4] Optical simulation of in-plane-switching blue phase liquid crystal display using the finite-difference time-domain method
Hu Dou(窦虎), Hongmei Ma(马红梅), Yu-Bao Sun(孙玉宝). Chin. Phys. B, 2016, 25(9): 094221.
[5] Dynamic properties of chasers in a moving queue based on a delayed chasing model
Ning Guo(郭宁), Jian-Xun Ding(丁建勋), Xiang Ling(凌翔), Qin Shi(石琴), Reinhart Kühne. Chin. Phys. B, 2016, 25(5): 050505.
[6] A local energy-preserving scheme for Klein–Gordon–Schrödinger equations
Cai Jia-Xiang (蔡加祥), Wang Jia-Lin (汪佳玲), Wang Yu-Shun (王雨顺). Chin. Phys. B, 2015, 24(5): 050205.
[7] Analysis for flow of Jeffrey fluid with nanoparticles
T. Hayat, Sadia Asad, A. Alsaedi. Chin. Phys. B, 2015, 24(4): 044702.
[8] A meshless algorithm with moving least square approximations for elliptic Signorini problems
Wang Yan-Chong (王延冲), Li Xiao-Lin (李小林). Chin. Phys. B, 2014, 23(9): 090202.
[9] Precipitation efficiency and its relationship to physical factors
Zhou Yu-Shu (周玉淑), Li Xiao-Fan (李小凡), Gao Shou-Ting (高守亭). Chin. Phys. B, 2014, 23(6): 064210.
[10] Effects of water and ice clouds on cloud microphysical budget:An equilibrium modeling study
Gao Shou-Ting (高守亭), Li Xiao-Fan (李小凡), Zhou Yu-Shu (周玉淑). Chin. Phys. B, 2014, 23(2): 024204.
[11] A conservative Fourier pseudospectral algorithm for the nonlinear Schrödinger equation
Lv Zhong-Quan (吕忠全), Zhang Lu-Ming (张鲁明), Wang Yu-Shun (王雨顺). Chin. Phys. B, 2014, 23(12): 120203.
[12] Consensus problems of first-order dynamic multi-agent systems with multiple time delays
Ji Liang-Hao (纪良浩), Liao Xiao-Feng (廖晓峰). Chin. Phys. B, 2013, 22(4): 040203.
[13] Variational-integral perturbation corrections of some lower excited states for hydrogen atoms in magnetic fields
Yuan Lin (袁琳), Zhao Yun-Hui (赵云辉), Xu Jun (徐军), Zhou Ben-Hu (周本胡), Hai Wen-Hua (海文华). Chin. Phys. B, 2012, 21(10): 103103.
[14] A new finite difference scheme for a dissipative cubic nonlinear Schr"odinger equation
Zhang Rong-Pei(张荣培),Yu Xi-Jun(蔚喜军),and Zhao Guo-Zhong(赵国忠). Chin. Phys. B, 2011, 20(3): 030204.
[15] A meshless method for the nonlinear generalized regularized long wave equation
Wang Ju-Feng(王聚丰), Bai Fu-Nong(白福浓), and Cheng Yu-Min(程玉民). Chin. Phys. B, 2011, 20(3): 030206.
No Suggested Reading articles found!