Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(4): 040202    DOI: 10.1088/1674-1056/ac935f
GENERAL Prev   Next  

Conformable fractional heat equation with fractional translation symmetry in both time and space

W S Chung1, A Gungor2, J Kříž3, B C Lütfüoǧlu3,4,†, and H Hassanabadi3,5
1 Department of Physics and Research Institute of Natural Science, College of Natural Science, Gyeongsang National University, Jinju 660-701, Korea;
2 Mechanical Engineering, Akdeniz University, Antalya, Turkey;
3 Department of Physics, University of Hradec Králové, Rokitanského 62, 500 03 Hradec Králové, Czech Republic;
4 Department of Physics, Akdeniz University, Antalya, Turkey;
5 Faculty of Physics, Shahrood University of Technology, Shahrood, Iran
Abstract  We investigate the fractional heat equation with fractional translation in both time and position with different fractional orders. As examples, we consider a rod and an α-disk with an initial constant temperature and discuss their cooling processes in the examined formalism.
Keywords:  fractional derivative      heat equation      conformable symmetry  
Received:  18 August 2022      Revised:  11 September 2022      Accepted manuscript online:  21 September 2022
PACS:  02.30.Jr (Partial differential equations)  
  02.60.Lj (Ordinary and partial differential equations; boundary value problems)  
  45.10.Hj (Perturbation and fractional calculus methods)  
Fund: This work was supported by the Internal Project of Excellent Research of the Faculty of Science of Hradec Kralove University (Grant No. 2022/2218).
Corresponding Authors:  B C Lütfüoǧlu     E-mail:

Cite this article: 

W S Chung, A Gungor, J Kříž, B C Lütfüoǧlu, and H Hassanabadi Conformable fractional heat equation with fractional translation symmetry in both time and space 2023 Chin. Phys. B 32 040202

[1] Nigmatullin R R, Arbuzov A A, Salehli F, Giz A, Bayrak I and Catalgil-Giz H 2007 Physica B 388 418
[2] Agrawal O P 2002 J. Vib. Acoust. 124 454
[3] Achar B N N, Hanneken J W and Clarke T 2004 Physica A 339 311
[4] Deng R, Davies P and Bajaj A K 2003 J. Sound Vib. 262 391
[5] Schmidt V H, Bohannan G, Arbogast D and Tuthill G 2000 J. Phys. Chem. Solids 61 283
[6] Manabe S 2002 Nonlinear Dyn. 29 251
[7] Battaglia J L, Le Lay L, Bastale J C, Oustaloup A and Cois O 2000 Int. J. Therm. Sci. 39 374
[8] Jiang Z, Zhang Z G, Li J J and Yang H W 2022 Fractal Fract. 6 108
[9] Fu L, Zhang Z G and Yang H W 2022 Math. Methods Appl. Sci. 1 Early access
[10] Khalil R, Al Horani M, Yousef A and Sababheh M 2014 J. Comput. Appl. Math. 264 65
[11] Abdeljawad T, Al Horani M and Khalil R 2015 J. Semigroup Theory Appl. 2015 7
[12] Abu Hammad I and Khalil R 2014 Am. J. Comput. Appl. Math. 4 187
[13] Abu Hammad M and Khalil R 2014 Int. J. Diff. Equ. Appl. 13 177
[14] Abu Hammad M and Khalil R 2014 Int. J. Pure Appl. Math. 94 215
[15] Abu Hammad M and Khalil R 2014 Int. J. Appl. Math. Res. 3 214
[16] Anderson D R and Ulness D J 2015 J. Math. Phys. 56 063502
[17] Chung W S 2015 J. Comput. Appl. Math. 290 150
[18] Hesameddini E and Asadollahifard E 2015 Iran. J. Numer. Anal. Optim. 5 37
[19] Kelley W and Peterson A 2010 The theory of differential equations: Classical and qualitative (2nd edn.) (New Jersey: Springer)
[20] Li Y, Ang K H and Chong G C Y 2006 IEEE Control Syst. Mag. 26 32
[21] Ortigueira M D and Machado J A T 2015 J. Comput. Phys. 293 4
[22] Prasad K R and Krushna B M B 2015 J. Nonlinear Funct. Anal. 2015 11
[23] Anderson D R and Ulness D J 2015 Adv. Dyn. Syst. Appl. 10 109
[24] Silva F S, Moreira D M and Moret M A 2018 Axioms 7 55
[25] Cenesiz Y and Kurt A 2015 Acta Universitatis Sapientiae, Mathematica 7 130
[26] Avci D, Eroglu B B I and Ozdemir N 2017 Thermal Sci. 21 819
[27] Mozaffari F S, Hassanabadi H, Sobhani H and Chung W S 2018 J. Korean Phys. Soc. 72 980
[28] Chung W S and Hassanabadi H 2018 Mod. Phys. Lett. B 33 1950368
[29] Abouelregal A E 2021 Waves Random Complex Media (Taylor & Francis) pp. 1-21
[30] Lotfy K H 2021 Waves Random Complex Media 31 239
[1] A local refinement purely meshless scheme for time fractional nonlinear Schrödinger equation in irregular geometry region
Tao Jiang(蒋涛), Rong-Rong Jiang(蒋戎戎), Jin-Jing Huang(黄金晶), Jiu Ding(丁玖), and Jin-Lian Ren(任金莲). Chin. Phys. B, 2021, 30(2): 020202.
[2] Stochastic bifurcations of generalized Duffing-van der Pol system with fractional derivative under colored noise
Wei Li(李伟), Mei-Ting Zhang(张美婷), Jun-Feng Zhao(赵俊锋). Chin. Phys. B, 2017, 26(9): 090501.
[3] Stochastic response of van der Pol oscillator with two kinds of fractional derivatives under Gaussian white noise excitation
Yong-Ge Yang(杨勇歌), Wei Xu(徐伟), Ya-Hui Sun(孙亚辉), Xu-Dong Gu(谷旭东). Chin. Phys. B, 2016, 25(2): 020201.
[4] Non-Noether symmetries of Hamiltonian systems withconformable fractional derivatives
Lin-Li Wang (王琳莉) and Jing-Li Fu(傅景礼). Chin. Phys. B, 2016, 25(1): 014501.
[5] Response of a Duffing—Rayleigh system with a fractional derivative under Gaussian white noise excitation
Zhang Ran-Ran (张冉冉), Xu Wei (徐伟), Yang Gui-Dong (杨贵东), Han Qun (韩群). Chin. Phys. B, 2015, 24(2): 020204.
[6] Space–time fractional KdV–Burgers equation for dust acoustic shock waves in dusty plasma with non-thermal ions
Emad K. El-Shewy, Abeer A. Mahmoud, Ashraf M. Tawfik, Essam M. Abulwafa, Ahmed Elgarayhi. Chin. Phys. B, 2014, 23(7): 070505.
[7] An approximation for the boundary optimal control problem of a heat equation defined in a variable domain
Yu Xin (于欣), Ren Zhi-Gang (任志刚), Xu Chao (许超). Chin. Phys. B, 2014, 23(4): 040201.
[8] A thermo-fluid analysis in magnetic hyperthermia
Iordana Astefanoaei, Ioan Dumitru, Alexandru Stancu, Horia Chiriac. Chin. Phys. B, 2014, 23(4): 044401.
[9] Fractional cyclic integrals and Routh equations of fractional Lagrange system with combined Caputo derivatives
Wang Lin-Li (王琳莉), Fu Jing-Li (傅景礼). Chin. Phys. B, 2014, 23(12): 124501.
[10] Noether's theorems of a fractional Birkhoffian system within Riemann–Liouville derivatives
Zhou Yan (周燕), Zhang Yi (张毅). Chin. Phys. B, 2014, 23(12): 124502.
[11] Fractional Cattaneo heat equation in a semi-infinite medium
Xu Huan-Ying (续焕英), Qi Hai-Tao (齐海涛), Jiang Xiao-Yun (蒋晓芸). Chin. Phys. B, 2013, 22(1): 014401.
[12] Fractional differential equations of motion in terms of combined Riemann–Liouville derivatives
Zhang Yi (张毅). Chin. Phys. B, 2012, 21(8): 084502.
[13] Hamilton formalism and Noether symmetry for mechanico–electrical systems with fractional derivatives
Zhang Shi-Hua (张世华), Chen Ben-Yong (陈本永), Fu Jing-Li (傅景礼). Chin. Phys. B, 2012, 21(10): 100202.
[14] Ion-acoustic waves in plasma of warm ions and isothermal electrons using time-fractional KdV equation
Sayed A. El-Wakil, Essam M. Abulwafa, Emad K. El-Shewy, and Abeer A. Mahmoud. Chin. Phys. B, 2011, 20(4): 040508.
[15] Lagrange equations of nonholonomic systems with fractional derivatives
Zhou Sha(周莎), Fu Jing-Li(傅景礼), and Liu Yong-Song(刘咏松). Chin. Phys. B, 2010, 19(12): 120301.
No Suggested Reading articles found!