Abstract We study the behaviors of thermalization in Fermi-Pasta-Ulam-Tsingou (FPUT) system with small number of particles using periodic boundary conditions. The total energy has initially equidistributed among some of the lowest frequency modes. The thermalization time teq depending on system's energy density ε scales as teq ∝ ε-4 only within a certain range of nonlinearity. In this range of nonlinearity, energies can interchange between the initial excited modes and other modes continuously with time until reaching the thermalized state. With a further decreasing nonlinearity, a steeper growth than ε-4 will appear. In the very weakly nonlinear regime, energies on low frequency modes are found to be frozen on large time scales. Redistribution of mode energies happens through the resonances of high frequency modes.
Zhenjun Zhang(张振俊), Jing Kang(康静), and Wen Wen(文文) Behaviors of thermalization for the Fermi-Pasta-Ulam-Tsingou system with small number of particles 2021 Chin. Phys. B 30 060505
[1] Fermi E, Pasta J and Ulam S 1965 in Collected Papers of E. Fermi, edited by E. Segré (Chicago: University of Chicago Press) 2 978 [2] Zabusky N J and Kruskal M D 1965 Phys. Rev. Lett.15 240 [3] Izrailev F M and Chirikov B V 1966 Sov. Phys. Dokl.11 30 [4] Bocchieri R, Scotti A, Bearzi B and Loinger A 1970 Phys. Rev. A2 2013 [5] Fucito E, Marchesoni F, Marinari E, Parisi G, Peliti L and Ruffo S 1982 J. Phys. (Paris)43 707 [6] Ferguson E E, Flashka H and McLaughlin D W 1982 J. Comput. Phys.45 157 [7] Livi R, Pettini M, Ruffo S, Sparpaglione M and Vulpiani A 1983 Phys. Rev. A28 3544 [8] Livi R, Pettini M, Ruffo S, Sparpaglione M and Vulpiani A 1985 Phys. Rev. A31 1039 [9] Pettini M and Landolfi M 1990 Phys. Rev. A41 768 [10] Pettini M and Cerruti-Sola M 1991 Phys. Rev. A44 975 [11] Kantz H, Livi R and Ruffo S 1994 Journal of Statistical Physics76 627 [12] De Luca J, Lichtenberg A J and Lieberman M A 1995 Chaos5 283 [13] De Luca J, Lichtenberg A J and Ruffo S 1995 Phys. Rev. E51 2877 [14] Casetti L, Cerruti-Sola M, Pettini M and Cohen E G D 1997 Phys. Rev. E55 6566 [15] De Luca J, Lichtenberg A J and Ruffo S 1999 Phys. Rev. E60 3781 [16] Ullmann K, Lichtenberg A J and Corso G 2000 Phys. Rev. E61 2471 [17] Ponno A, Galgani L and Guerra F 2000 Phys. Rev. E61 7081 [18] Villain P and Lewenstein M 2000 Phys. Rev. A62 043601 [19] De Luca J and Lichtenberg A 2002 Phys. Rev. E66 026206 [20] Berchialla L, Galgani L and Giorgilli A 2004 Discrete Contin. Dyn. Syst.11 855 [21] Berchialla L, Giorgilli A and Paleari S 2004 Phys. Lett. A321 167 [22] Campbell D K, Rosenau P and Zaslavsky G M 2005 Chaos15 015101 [23] Berman G P and Izrailev F M 2005 Chaos15 015104 [24] Lichtenberg A J, Mirnov V V and Day C 2005 Chaos15 015109 [25] Flach S, Ivanchenko M V and Kanakov O I 2005 Phys. Rev. Lett.95 064102 [26] Penati T and Flach S 2007 Chaos17 023102 [27] Carati A, Galgani L, Giorgilli A and Paleari S 2007 Phys. Rev. E76 022104 [28] Benettin G, Livi R and Ponno A 2009 Journal of Statistical Physics135 873 [29] Christodoulidi H, Efthymiopoulos C and Bountis T 2010 Phys. Rev. E81 016210 [30] Ponno A, Christodoulidi H, Skokos Ch and Flach S 2011 Chaos21 043127 [31] Benettin G and Ponno A 2011 Journal of Statistical Physics144 793 [32] Genta T, Giorgilli A, Paleari S and Penati T 2012 Phys. Lett. A376 2038 [33] Benettin G, Christodoulidi H and Ponno A 2013 Journal of Statistical Physics152 195 [34] Maiocchi A, Bambusi D and Carati A 2014 Journal of Statistical Physics155 300 [35] Zhang Z J, Tang C M and Tong P Q 2016 Phys. Rev. E93 022216 [36] Guasoni M, Garnier J, Rumpf B, Sugny D, Fatome J, Amrani F, Millot G and Picozzi A 2017 Phys. Rev. X7 011025 [37] Danieli C, Campbell D K and Flach S 2017 Phys. Rev. E95 060202 [38] Zhang Z J, Tang C M, Kang J and Tong P Q 2017 Chin. Phys. B26 100505 [39] Falkovich G, Lvov V and Zakharov V E 1992 Kolmogorov spectra of turbulence I. Wave turbulence (Berlin: Springer) [40] Zakharov V, Dias F and Pushkarev A 2004 Phys. Rep.398 1 [41] Nazarenko S 2011 Wave Turbulence, Lecture Notes in Physics (Berlin: Springer Verlag) Vol. 825 [42] OnoratoM. Vozella L, Proment D and Lvov Y V 2015 Proc. Natl. Acad. Sci. USA112 4208 [43] Lvov Y V and Onorato M 2018 Phys. Rev. Lett.120 144301 [44] Pistone L, Onorato M and Chibbaro S 2018 Europhys. Lett.121 44003 [45] Fu W C, Zhang Y and Zhao H 2019 Phys. Rev. E100 010101 [46] Pistone L, Chibbaro S, Bustamante M D, Lvov Y V and Onorato M 2019 Mathematics in Engineering1 672 [47] Bustamante M D, Hutchinson K, Lvov Y V and Onorato M 2019 Commun. Nonlinear Sci. Numer. Simul.73 437 [48] Wang Z, Fu W C, Zhang Y and Zhao H 2020 Phys. Rev. Lett.124 186401 [49] Sun L L, Zhang Z J and Tong P Q 2020 New J. Phys.22 073027 [50] Fu W C, Zhang Y and Zhao H 2019 New J. Phys.21 043009 [51] Skokos Ch and Gerlach E 2010 Phys. Rev. E82 036704
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.