|
|
Dynamics of high-frequency modulated waves in a nonlinear dissipative continuous bi-inductance network |
S M Ngounou1,2 and F B Pelap1,† |
1 Unité de Recherche de Mécanique et de Modélisation des Systèmes Physiques(UR-2 MSP), Faculté des Sciences, Université de Dschang, BP 69 Dschang, Cameroun; 2 Unité de Recherche de Matière Condensée d'Electronique et de Traitement du Signal(UR-MACETS), Faculté des Sciences, Université de Dschang, BP 67 Dschang, Cameroun |
|
|
Abstract This paper presents intensive investigation of dynamics of high frequency nonlinear modulated excitations in a damped bimodal lattice. The effects of the dissipation are considered through a linear dissipation coefficient whose evolution in terms of the carrier wave frequency is checked. There appears that the dissipation coefficient increases with the carrier wave frequency. In the linear limit and for high frequency waves, study of the asymptotic behavior of plane waves reveals the existence of two additional regions in the dispersion curve where the modulational phenomenon is observed compared to the lossless line. Based on the multiple scales method exploited in the continuum approximation using an appropriate decoupling ansatz for the voltage of the two different cells, it appears that the motion of modulated waves is described by a dissipative complex Ginzburg-Landau equation instead of a Korteweg-de Vries equation. We also show that this amplitude wave equation admits envelope and hole solitons in the high frequency mode. From basic sources, we design a programmable electronic generator of complex signals with desired characteristics, which delivers signals exploited as input waves for all our numerical simulations. These simulations are performed in the LTspice software that uses realistic components and give the results that corroborate perfectly our analytical predictions.
|
Received: 27 September 2020
Revised: 20 December 2020
Accepted manuscript online: 30 December 2020
|
PACS:
|
05.45.-a
|
(Nonlinear dynamics and chaos)
|
|
05.45.Yv
|
(Solitons)
|
|
Corresponding Authors:
F B Pelap
E-mail: fbpelap@yahoo.fr
|
Cite this article:
S M Ngounou and F B Pelap Dynamics of high-frequency modulated waves in a nonlinear dissipative continuous bi-inductance network 2021 Chin. Phys. B 30 060504
|
[1] Alejandro B A, Gadi F and Boaz I 2004 Physica D 189 277 [2] Alidou M, Jiotsa A K and Kofane T C 2006 Chaos Solitons and Fractals 27 914 [3] Nath R, Pedri P and Santos L 2008 Phys. Rev. Lett. 101 210402 [4] Maucher F, Buccoliero D, Skupin S, Grech M, Desyatnikov A S and Krolikowski W 2009 Opt. Quantum Electron. 41 337 [5] Yamgoue S B, Deffo G R, Tala-Tebue E and Pelap F B 2018 Chin. Phys. B 27 126303 [6] Yamgoue S B, Deffo G R, Tala-Tebue E and Pelap F B 2018 Chin. Phys. B 27 096301 [7] Remoissenet M 1999 Waves Called Solitons 3rd edn (Berlin: Springer) [8] Scott A 1999 Active Nonlinear Waves Propagation in Electronics (Oxford: Oxford University Press) [9] Afshari E and Hajimiri A 2005 IEEE J. Solid State Circuits 40 744 [10] Makenne Y L, Kengne R and Pelap F B 2019 Chaos Solitons and Fractals 127 70 [11] Ndzana F I!I and Mohamadou A 2019 Chaos 29 013116 [12] Iqbal S A and Karim Samsul Ariffin Abdul 2020 Results in Physics 18 103309 [13] Pelap F B and Kofane T C 2001 Phys. Scripta 64 410 [14] Descalzi O, Martinez S and Tirapegui E 2001 Chaos Solitons & Fractals 12 2619 [15] Pelap F B and Faye M M 2004 J. Phys. A: Math. Gen. 37 1727 [16] Pelap F B and Faye M M 2007 J. Phys. Soc. Jpn. 76 074602 [17] Kengne E and Vaillancourt R 2009 Commun. Nonlinear Sci. Numer. Simulat. 14 3804 [18] Yemele D, Talla P K and Kofane T C 2003 J. Phys. D: Appl. Phys. 36 1429 [19] Hafez M G, Iqbal S A, Akther S and Uddin M F 2019 Results in Physics 15 102778 [20] Abdoulkary S, Beda T, Doka S Y, Ndzana F I!I, Kavitha L and Mohamadou A 2012 J. Mod. Phys. 3 438 [21] Yamigno S D 2014 J. Mod. Phys. 5 394 [22] Kofane T C, Michaux B and Remoissenet M 1988 J. Phys. C: Solid State Phys. 21 1395 [23] Essimbi B Z, Ambassa L and Kofane T C 1997 Physica D 106 207 [24] Pelap F B, Kofane T C, Flytzanis N and Remoissenet M 2001 J. Phys. Soc. Jpn. 70 2568 [25] Kengne E, Tadmon C and Vaillancourt R 2009 Chin. J. Phys. 47 80 [26] Pelap F B, Tatsinkou I and Fomethe A 2011 Phys. Scripta 83 045009 [27] Ngounou S M and Pelap F B 2020 Chin. Phys. B 29 040502 [28] Farota A K and Faye M M 2013 Phys. Scripta 88 055802 [29] Farota A K, Faye M M, Diop B, Ndiaye D and Niane M T 2018 Experimental Studies of the Electrical Nonlinear Bimodal Transmission Line in Advanced Electronic Circuits (IntechOpen) [30] Tchawoua C, Kofane T C and Bokosah A S 1994 Phys. Rev. B 50 4189 [31] Makhankov V G 1978 Phys. Rep. 35 1 [32] Bekki N 1981 J. Phys. Soc. Jpn. 50 659 [33] Lega L, Janiaud B, Jucquois S and Croquette V 1992 Phys. Rev. A 45 5596 [34] Miguel M S 1995 Phys. Rev. Lett. 75 425 [35] Fernandez-Diaz J M, Guinea A and Palacios S L 2002 IEEE Photon. Technol. Lett. 14 807 [36] Zakharov V E and Ostrovsky L A 2009 Physica D 238 540 [37] Pelap F B, Kamga J H, Yamgoue S B, Ngounou S M and Ndecfo J E 2015 Phys. Rev. E 91 022925 [38] Lange C G and Newell A C 1974 SIAM J. Appl. Math. 27 441 [39] Nozaki K and Bekki N 1984 J. Phys. Soc. Jpn. 53 1581 [40] Hirota R and Suzuki K 1970 J. Phys. Soc. Jpn. 28 1366 [41] Saïdou A, Beda T, Doka S Y, Ndzana F I!$I, Kavitha L and Mohamadou A 2012 J. Mod. Phys. 2012 438 [42] Ndjoko P B, Bilbault J M, Binczak S and Kofane T C 2012 Phys. Rev. E 85 011916 [43] Motcheyo A B T, Tchawoua C, Siewe Siewe M and Tchameu J D T 2013 Commun. Nonlin. Sci. Numer. Simulat. 18 946 [44] Mollenauer L F, Neubelt M J, Evangelides S G, Gordon J P, Simpson J R and Cohen L G 1990 Opt. Lett. 15 1203 [45] Rodwell M J, Allen S T, Yu R Y, et al. 1994 Proc. IEEE 82 1037 [46] Huang X M H, Feng X L, Zorman C A, Mehregany M and Roukes M L 2005 New J. Phys. 7 247 [47] Kivshar Y S and Agrawal G P 2013 Optical Solitons: From Fibers to Photonic Crystals (New York: Academic) [48] Marquie P, Bilbault J M and Remoissenet M 1994 Phys. Rev. E 49 828 [49] Kenmegne F, Yemélé D and Woafo P 2012 Phys. Rev. E 85 56606 [50] Suchenek M and Starecki T 2012 Rev. Sci. Instrum. 83 124704 [51] Analog Devices AD9914, 2020 accessed on September 20, 2020 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|