Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(4): 044202    DOI: 10.1088/1674-1056/abd2aa
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Incoherent digital holographic spectral imaging with high accuracy of image pixel registration

Feng-Ying Ma(马凤英)1, Xi Wang(王茜)1, Yuan-Zhuang Bu(卜远壮)1, Yong-Zhi Tian(田勇志)1, Yanli Du(杜艳丽) 1, Qiao-Xia Gong(弓巧侠)1, Ceyun Zhuang(庄策云)2, Jinhai Li(李金海)1, and Lei Li(李磊)1,†
1 School of Physics and Microelectronics, Key Laboratory of Materials Physics of the Ministry of Education, Zhengzhou University, Zhengzhou 450001, China; 2 School of Mechanical Engineering, Zhengzhou University, Zhengzhou 450001, China
Abstract  Fresnel incoherent correlation holography (FINCH) is a unique three-dimensional (3D) imaging technique which has the advantages of scanning-free, high resolution, and easy matching with existing mature optical systems. In this article, an incoherent digital holographic spectral imaging method with high accuracy of spectral reconstruction based on liquid crystal tunable filter (LCTF) and FINCH is proposed. Using the programmable characteristics of spatial light modulator (SLM), a series of phase masks, none of whose focal lengths changes with wavelength, is designed and made. For each wavelength of LCTF output, SLM calls three phase masks with different phase constants at the corresponding wavelength, and CCD records three holograms. The spectral images obtained by this method have a constant magnification, which can achieve pixel-level image registration, restrain image registration errors, and improve spectral reconstruction accuracy. The results show that this method can not only obtain the 3D spatial information and spectral information of the object simultaneously, but also have high accuracy of spectral reconstruction and excellent color reproducibility.
Keywords:  incoherent digital holography      high-precision registration      spectral imaging      microspectral imaging  
Received:  01 October 2020      Revised:  28 November 2020      Accepted manuscript online:  11 December 2020
PACS:  42.30.-d (Imaging and optical processing)  
  42.40.Ht (Hologram recording and readout methods)  
  87.64.K- (Spectroscopy)  
  87.64.-t (Spectroscopic and microscopic techniques in biophysics and medical physics)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61505178, 61307019, and 11504333) and the Natural Science Foundation of Henan Province, China (Grant Nos. 18A140032, 15A140038, and 16A140035).
Corresponding Authors:  Corresponding author. E-mail: lilei@zzu.edu.cn   

Cite this article: 

Feng-Ying Ma(马凤英), Xi Wang(王茜), Yuan-Zhuang Bu(卜远壮), Yong-Zhi Tian(田勇志), Yanli Du(杜艳丽) , Qiao-Xia Gong(弓巧侠), Ceyun Zhuang(庄策云), Jinhai Li(李金海), and Lei Li(李磊) Incoherent digital holographic spectral imaging with high accuracy of image pixel registration 2021 Chin. Phys. B 30 044202

1 Zhang Q S, Lu X X, Yu Q T and Liu G Y 2009 Chin. Phys. B 18 2764
2 Wang F, Xiao W, Pan F, Liu S, Cong L, Li R, Rong L and He A 2011 Opt. Laser Eng. 49 903
3 BjornK, Andreas B, Angelika V, Steffi K, Patrik L, Johannes M, Helge K and Gert V B 2010 J. Biomed. Opt. 15 036009
4 Marquet P, Rappaz B, Magistretti P J, Cuche E, Emery Y, Colomb T and Depeursinge C 2005 Opt. Lett. 30 468
5 Cai L Z, Meng X F, Meng X F, Wang Y R, Shen X X, Dong G Y and Yang X L 2006 Opt. Commun. 259 64
6 Hong J and Kim M K 2013 J. Eur. Opt. Soc. Rapid. Publ. 8 13077
7 Man T, Wan Y, Wu F and Wang D Y 2015 Opt. Commun. 355 109
8 Rosen J, Siegel N and Brooker G 2011 Opt. Express 19 26249
9 RosenJ and Brooker G 2007 Opt. Express 15 2244
10 Kim and Myung K 2013 Opt. Express 21 9636
11 Tomasz K and Maksymilian C 2016 Opt. Express 24 2189
12 Hara T, Tahara T, Ichihashi Y, Oi R and Ito T 2020 Opt. Express 28 10078
13 Yara\cs F, Kang H and Onural L 2009 Appl. Opt. 48 H48
14 Endo Y, Tahara T and Okamoto R 2019 Appl. Opt. 58 G149
15 Kim M K 2012 Opt. Lett. 37 2694
16 Kim M K 2013 Appl. Opt. 52 A117
17 Liu J P 2015 Appl. Opt. 54 A59
18 Rivenson Y, Stern A and Rosen J 2011 Opt. Express 19 6109
19 Naik D N, Pedrini G and Osten W 2013 Opt. Express 21 3990
20 Wan Y H, Man T L and Wang D Y 2014 Opt. Express 22 8565
21 Choi K, Hong K, Park J and Min S W 2020 Appl. Opt. 59 1948
22 He J R, Ren H, Xu T X, Gong Q X, Du Y L, Liu X M, Shan C X, Su J P and Ma F Y 2019 J. Opt. 21 025701
23 Pedrini G, Li H, Faridian A and Osten W 2012 Opt. Lett. 37 713
24 Rosen J and Brooker G 2007 Opt. Lett. 32 912
25 Lee Z P, Shang S L, Hu C M and Zibordi G 2014 Appl. Opt. 53 3301
26 Yang J F, Wan J H, Ma Y, Zhang J, Hu Y B and Jiang Z C 2019 J. Coastal Res. 90 332
27 Wang D N, Grattan K T V and Palmer A W 1996 Opt. Commun. 127 19
28 Cui J H, Zhang S S, Jiang Z Y, Liu P and Li L 2020 J. Appl. Remote Sens. 14 026520
29 Luo Y, Loannis K Z, Oh S B, Kamm R D and Barbastathis G 2011 J. Biomed. Opt. 16 096015
30 Carver G E, Locknar S A, Morrison W A, Ramanujan Krishnan V and Farkas D L 2014 J. Biomed. Opt. 19 036016
31 Katz B, Rosen J, Kelner R and Brooker G 2012 Opt. Express 20 9109
[1] Optical design of common-aperture multispectral and polarization optical imaging system with wide field of view
Xin Liu(刘鑫), Jun Chang(常军), Shuai Feng(冯帅), Yu Mu(穆郁), Xia Wang(王霞), Zhao-Peng Xu(徐兆鹏). Chin. Phys. B, 2019, 28(8): 084201.
[2] Active hyperspectral imaging with a supercontinuum laser source in the dark
Zhongyuan Guo(郭中源), Yu Liu(刘煜), Xin Zheng(郑鑫), Ke Yin(殷科). Chin. Phys. B, 2019, 28(3): 034206.
[3] Piecewise spectrally band-pass for compressive coded aperture spectral imaging
Qian Lu-Lu (钱路路), Lü Qun-Bo (吕群波), Huang Min (黄旻), Xiang Li-Bin (相里斌). Chin. Phys. B, 2015, 24(8): 080703.
No Suggested Reading articles found!