|
|
A meshless algorithm with the improved moving least square approximation for nonlinear improved Boussinesq equation |
Yu Tan(谭渝) and Xiao-Lin Li(李小林)† |
School of Mathematical Sciences, Chongqing Normal University, Chongqing 400047, China |
|
|
Abstract An improved moving least square meshless method is developed for the numerical solution of the nonlinear improved Boussinesq equation. After the approximation of temporal derivatives, nonlinear systems of discrete algebraic equations are established and are solved by an iterative algorithm. Convergence of the iterative algorithm is discussed. Shifted and scaled basis functions are incorporated into the method to guarantee convergence and stability of numerical results. Numerical examples are presented to demonstrate the high convergence rate and high computational accuracy of the method.
|
Received: 08 July 2020
Revised: 26 July 2020
Accepted manuscript online: 13 August 2020
|
PACS:
|
02.60.Cb
|
(Numerical simulation; solution of equations)
|
|
02.60.Lj
|
(Ordinary and partial differential equations; boundary value problems)
|
|
03.65.Ge
|
(Solutions of wave equations: bound states)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11971085), the Fund from the Chongqing Municipal Education Commission, China (Grant Nos. KJZD-M201800501 and CXQT19018), and the Chongqing Research Program of Basic Research and Frontier Technology, China (Grant No. cstc2018jcyjAX0266). |
Corresponding Authors:
†Corresponding author. E-mail: lxlmath@163.com
|
Cite this article:
Yu Tan(谭渝) and Xiao-Lin Li(李小林) A meshless algorithm with the improved moving least square approximation for nonlinear improved Boussinesq equation 2021 Chin. Phys. B 30 010201
|
1 Bogolubsky I L 1997 Comput. Phys. Commun. 13 149 2 Wazwaz A M2009 Partial Differential Equations and Solitary Waves Theory(Berlin: Springer) 3 Zhang T, Lin Z H, Huang G Y, Fan C M and Li P W 2020 Ocean Eng. 198 106957 4 Soerensen M P, Christiansen P L and Lomdahl P S 1984 J. Acoust. Soc. Am. 76 871 5 Berezin Y A and Karpman V I J. Exp. Theoret. Phys. 24 1049 6 Irk D and Da\vg \.I 2010 Numer. Methods Part. Differ. Equ. 26 1316 7 Bratsos A G 2009 Chaos, Solitons and Fractals 40 2083 8 Lu F Q, Song Z Y and Zhang Z 2016 J. Comput. Math. 34 462 9 Wongsaijai B, Oonariya C and Poochinapan K 2020 Math. Comput. Simulation 178 125 10 Karaagac B, Ucar Y and Esen A 2018 Filomat 32 5573 11 Wang Q X, Zhang Z Y, Zhang X H and Zhu Q Y 2014 J. Comput. Phys. 270 58 12 Yan J L, Deng D W, Lu F Q and Zhang Z Y 2020 Appl. Math. Model. 87 20 13 Yan J L, Zhang Z Y, Zhao T J and Liang D 2018 Numer. Methods Part. Differ. Equ. 34 1145 14 Shokri A and Dehghan M 2010 Comput. Phys. Commun. 181 1990 15 Li X L, Sun W Z, Xing Y L and Chou C S 2020 J. Comput. Phys. 401 109002 16 Cai J X, Qin Z L and Bai C Z 2013 Chin. Phys. Lett. 30 070202 17 Cheng Y M2015 Meshless Methods (Beijing: Science Press)(in Chinese) 18 Li X L 2016 Appl. Numer. Math. 99 77 19 Li X L and Dong H Y 2020 Appl. Math. Comput. 382 125326 20 Li X L and Li S L 2020 Comput. Math. Appl. 79 3297 21 Zhang T and Li X L 2020 Appl. Math. Comput. 380 125306 22 Ren H P, Cheng Y M and Zhang W 2010 Sci. China: Phys. Mech. Astron. 53 758 23 Zhang T and Li X L 2020 Comput. Math. Appl. 79 363 24 Cheng Y M, Peng M J and Li J H https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CJFD&dbname=CJFD2005&filename=LXXB200506007&v=dewm9R9erWUAFOBOvrzpcGW3tU 25 Li X L 2018 Appl. Math. Model. 63 148 26 Chen L C and Li X L 2020 Appl. Math. LeTt. 101 106067 27 Li D M, Bai F N, Cheng Y M and Liew K M 2012 Comput. Methods Appl. Mech. Eng. 233 1 28 Wang J F, Sun F X and Cheng Y M. 2012 Chin. Phys. B 21 090204 29 Deng Y J, Liu C, Peng M J and Cheng Y M 2015 Int. J. Appl. Mech. 7 1550017 30 Li X L and Li S L 2016 Comput. Math. Appl. 72 1515 31 Qu W Z, Fan C M and Li X L 2020 Comput. Math. Appl. 83 13 32 Cheng Y M and Peng M J 2005 Sci. China Ser. G 48 641 33 Tang Y Z and Li X L 2017 Chin. Phys. B 26 030203 34 Zhang Z, Wang J F, Cheng Y M and Liew K M 2013 Sci. China: Phys. Mech. Astron. 56 1568 35 Cheng R J and Cheng Y M 2016 Chin. Phys. B 25 020203 36 Cheng R J and Wei Q 2013 Chin. Phys. B 22 060209 37 Li X L and Zhang S G 2016 Appl. Math. Model. 40 2875 38 Burden R L and Faires J D2011 Numerical Analysis (Boston: Cengage Learning) 39 Cheng X P, Ma W X and Yang Y Q 2019 Chin. Phys. B 28 100203 40 Qin J X, Chen Y M and Deng X G 2019 Chin. Phys. B 28 104701 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|