Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(1): 010506    DOI: 10.1088/1674-1056/23/1/010506
GENERAL Prev   Next  

Gradient method for blind chaotic signal separation based on proliferation exponent

Lü Shan-Xiang (吕善翔), Wang Zhao-Shan (王兆山), Hu Zhi-Hui (胡志辉), Feng Jiu-Chao (冯久超)
School of Electronic and Information Engineering, South China University of Technology, Guangzhou 510641, China
Abstract  A new method to perform blind separation of chaotic signals is articulated in this paper, which takes advantage of the underlying features in the phase space for identifying various chaotic sources. Without incorporating any prior information about the source equations, the proposed algorithm can not only separate the mixed signals in just a few iterations, but also outperforms the fast independent component analysis (FastICA) method when noise contamination is considerable.
Keywords:  blind separation      chaotic signals      phase space  
Received:  13 June 2013      Revised:  24 July 2013      Accepted manuscript online: 
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
  05.40.Ca (Noise)  
  05.45.Vx (Communication using chaos)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 60872123), the Joint Fund of the National Natural Science Foundation and the Natural Science Foundation of Guangdong Province, China (Grant No. U0835001), the Fundamental Research Funds for the Central Universities of China (Grant No. 2012ZM0025), the South China University of Technology, China, and the Fund for Higher-Level Talents in Guangdong Province, China (Grant No. N9101070).
Corresponding Authors:  Feng Jiu-Chao     E-mail:  fengjc@scut.edu.cn

Cite this article: 

Lü Shan-Xiang (吕善翔), Wang Zhao-Shan (王兆山), Hu Zhi-Hui (胡志辉), Feng Jiu-Chao (冯久超) Gradient method for blind chaotic signal separation based on proliferation exponent 2014 Chin. Phys. B 23 010506

[1] Feng J C and Tse C K 2008 Reconstruction of Chaotic Signals with Applications to Chaos-based Communications (Beijing: Tsinghua University Press) pp. 3–20
[2] Li W L, Li S F and Li G 2012 Chin. Phys. B 21 064217
[3] Luo Y L and Du M H 2013 Chin. Phys. B 22 080503
[4] Arena P, Buscarino A, Fortuna L and Frasca M 2006 Phys. Rev. E 74 026212
[5] Xie Z B and Feng J C 2010 IEEE Trans. Circuits Syst. II Exp. Briefs 57 461
[6] Liu K, Li H, Dai X and Xu P 2005 J. Inf. Comput. Sci. 2 283
[7] Hu Z H and Feng J C 2011 Acta Phys. Sin. 60 070505 (in Chinese)
[8] Wang S Y and Feng J C 2012 Acta Phys. Sin. 61 170508 (in Chinese)
[9] Popivanov D, Jivkova S, Stomonyakov V and Nicolova G 2005 Signal Process. 85 2112
[10] Chen H B, Feng J C and Fang Y 2008 Chin. Phys. Lett. 25 405
[11] Kuraya M, Uchida A, Sano S, Yoshimori S and Umeno K 2008 Electron. Lett. 44 248
[12] Hyvarinen A, Karhunen J and Oja E 2001 Independent Component Analysis (New York: John Wiley & Sons) pp. 147–237
[13] Hyvarinen A and Oja E 1997 Neural Comput. 9 1483
[14] Bell A J and Sejnowski T J 1995 Neural Comput. 7 1129
[15] Yang H H and Amari S I 1997 Neural Comput. 9 1457
[16] Ikeda S and Toyama K 2000 Neural Networks 13 1063
[17] Ikeda S 2000 ICA on Noisy Data: A Factor Analysis Approach (London: Springer) pp. 201–215
[18] Takens F 1981 Lecture Notes in Mathematics 898 366
[1] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[2] Margolus-Levitin speed limit across quantum to classical regimes based on trace distance
Shao-Xiong Wu(武少雄), Chang-Shui Yu(于长水). Chin. Phys. B, 2020, 29(5): 050302.
[3] Thermodynamics and weak cosmic censorship conjecture of charged AdS black hole in the Rastall gravity with pressure
Xin-Yun Hu(胡馨匀), Ke-Jian He(何柯健), Zhong-Hua Li(李中华), Guo-Ping Li(李国平). Chin. Phys. B, 2020, 29(5): 050401.
[4] Study of highly excited vibrational dynamics of HCP integrable system with dynamic potential methods
Aixing Wang(王爱星), Lifeng Sun(孙立风), Chao Fang(房超), Yibao Liu(刘义保). Chin. Phys. B, 2020, 29(1): 013101.
[5] Dynamics of cubic-quintic nonlinear Schrödinger equation with different parameters
Wei Hua(花巍), Xue-Shen Liu(刘学深), Shi-Xing Liu(刘世兴). Chin. Phys. B, 2016, 25(5): 050202.
[6] Signal reconstruction in wireless sensor networks based on a cubature Kalman particle filter
Huang Jin-Wang (黄锦旺), Feng Jiu-Chao (冯久超). Chin. Phys. B, 2014, 23(7): 070504.
[7] Denoising via truncated sparse decomposition
Xie Zong-Bo(谢宗伯) and Feng Jiu-Chao(冯久超). Chin. Phys. B, 2011, 20(5): 050504.
[8] The dynamical properties of a Rydberg hydrogen atom between two parallel metal surfaces
Liu Wei(刘伟), Li Hong-Yun(李洪云), Yang Shan-Ying(杨善迎), and Lin Sheng-Lu(林圣路). Chin. Phys. B, 2011, 20(3): 033401.
[9] Phase space reconstruction of chaotic dynamical system based on wavelet decomposition
You Rong-Yi(游荣义)and Huang Xiao-Jing(黄晓菁). Chin. Phys. B, 2011, 20(2): 020505.
[10] Low dimensional chaos in the AT and GC skew profiles of DNA sequences
Zhou Qian(周茜) and Chen Zeng-Qiang(陈增强). Chin. Phys. B, 2010, 19(9): 090508.
[11] A generalized Collins formula derived by virtue of the displacement-squeezing related squeezed coherent state representation
Xie Chuan-Mei(谢传梅), Fan Hong-Yi(范洪义), and Wan Shao-Long(完绍龙). Chin. Phys. B, 2010, 19(6): 064207.
[12] An efficient method of distinguishing chaos from noise
Wei Heng-Dong(魏恒东), Li Li-Ping(李立萍), and Guo Jian-Xiu(郭建秀). Chin. Phys. B, 2010, 19(5): 050505.
[13] Conformal invariance and conserved quantities of general holonomic systems in phase space
Xia Li-Li(夏丽莉), Cai Jian-Le(蔡建乐), and Li Yuan-Cheng(李元成). Chin. Phys. B, 2009, 18(8): 3158-3162.
[14] New conserved quantities of Noether--Mei symmetry of mechanical system in phase space
Fang Jian-Hui(方建会), Liu Yang-Kui(刘仰魁), and Zhang Xiao-Ni(张小妮) . Chin. Phys. B, 2008, 17(6): 1962-1966.
[15] A new type of conserved quantity of Mei symmetry for relativistic nonholonomic mechanical system in phase space
Zhang Xiao-Ni(张小妮), Fang Jian-Hui(方建会),Pang Ting(庞婷), and Lin Peng(蔺鹏) . Chin. Phys. B, 2008, 17(2): 394-398.
No Suggested Reading articles found!