Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(5): 057506    DOI: 10.1088/1674-1056/ab889b
Special Issue: Virtual Special Topic — Magnetism and Magnetic Materials
RAPID COMMUNICATION Prev   Next  

Tunable deconfined quantum criticality and interplay of different valence-bond solid phases

Bowen Zhao(赵博文)1, Jun Takahashi2,1, Anders W. Sandvik1,2
1 Department of Physics, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, USA;
2 Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Abstract  We use quantum Monte Carlo simulations to study an S=1/2 spin model with competing multi-spin interactions. We find a quantum phase transition between a columnar valence-bond solid (cVBS) and a Néel antiferromagnet (AFM), as in the scenario of deconfined quantum-critical points, as well as a transition between the AFM and a staggered valence-bond solid (sVBS). By continuously varying a parameter, the sVBS-AFM and AFM-cVBS boundaries merge into a direct sVBS-cVBS transition. Unlike previous models with putative deconfined AFM-cVBS transitions, e.g., the standard J-Q model, in our extended J-Q model with competing cVBS and sVBS inducing terms the transition can be tuned from continuous to first-order. We find the expected emergent U(1) symmetry of the microscopically Z4 symmetric cVBS order parameter when the transition is continuous. In contrast, when the transition changes to first-order, the clock-like Z4 fluctuations are absent and there is no emergent higher symmetry. We argue that the confined spinons in the sVBS phase are fracton-like. We also present results for an SU(3) symmetric model with a similar phase diagram. The new family of models can serve as a useful tool for further investigating open questions related to deconfined quantum criticality and its associated emergent symmetries.
Keywords:  quantum phase transitions      deconfined quantum criticality      quantum spin systems      quantum Monte Carlo simulations  
Received:  18 March 2020      Revised:  02 April 2020      Accepted manuscript online: 
PACS:  75.10.Jm (Quantized spin models, including quantum spin frustration)  
  64.70.Tg (Quantum phase transitions)  
  75.40.Mg (Numerical simulation studies)  
  75.30.Kz (Magnetic phase boundaries (including classical and quantum magnetic transitions, metamagnetism, etc.))  
Fund: Project supported by the NSF under Grant No. DMR-1710170 and by a Simons Investigator Grant.
Corresponding Authors:  Anders W. Sandvik     E-mail:  sandvik@bu.edu

Cite this article: 

Bowen Zhao(赵博文), Jun Takahashi, Anders W. Sandvik Tunable deconfined quantum criticality and interplay of different valence-bond solid phases 2020 Chin. Phys. B 29 057506

[1] Manousakis E 1991 Rev. Mod. Phys. 63 1
[2] Haldane F D M 1988 Phys. Rev. Lett. 61 1029
[3] Chakravarty S, Halperin B I and Nelson D R 1989 Phys. Rev. B 39 2344
[4] Sachdev S 2008 Nat. Phys. 4 173
[5] Dagotto E and Moreo A 1989 Phys. Rev. Lett. 63 2148
[6] Read N and Sachdev S 1989 Phys. Rev. Lett. 62 1694
[7] Read N and Sachdev S 1990 Phys. Rev. B 42 4568
[8] Murthy G and Sachdev S 1990 Nucl. Phys. B 344 557
[9] Senthil T, Vishwanath A, Balents L, Sachdev S and Fisher M P A 2004 Science 303 1490
[10] Levin M and Senthil T 2004 Phys. Rev. B 70 220403
[11] Sandvik A W 2007 Phys. Rev. Lett. 98 227202
[12] Sandvik A W 2012 Phys. Rev. B 85 134407
[13] Jiang F J, Nyfeler M, Chandrasekharan S and Wiese U J 2008 J. Stat. Mech.: Theory Exp. 2008 P02009
[14] Sandvik A W 2010 Phys. Rev. Lett. 104 177201
[15] Chen K, Huang Y, Deng Y, Kuklov A B, Prokofev N V and Svistunov B V 2013 Phys. Rev. Lett. 110 185701
[16] Melko R G and Kaul R K 2008 Phys. Rev. Lett. 100 017203
[17] Lou J, Sandvik A W and Kawashima N 2009 Phys. Rev. B 80 180414(R)
[18] Kaul R K 2011 Phys. Rev. B 84 054407
[19] Harada K, Suzuki T, Okubo T, Matsuo H, Lou J, Watanabe H, Todo S and Kawashima N 2013 Phys. Rev. B 88 220408(R)
[20] Block M S, Melko R G and Kaul R K 2013 Phys. Rev. Lett. 111 137202
[21] Pujari S, Alet F and Damle K 2015 Phys. Rev. B 91 104411
[22] Suwa H, Sen A and Sandvik A W 2016 Phys. Rev. B 94 144416
[23] Shao H, Guo W and Sandvik A W 2016 Science 352 213
[24] Ma N, Sun G Y, You Y Z, Xu C K, Vishwanath A, Sandvik A W and Meng Z Y 2018 Phys. Rev. B 98 174421
[25] Kuklov A B, Matsumoto M, Prokofev N V, Svistunov B V and Troyer M 2008 Phys. Rev. Lett. 101 050405
[26] Sreejith G J and Powell S 2014 Phys. Rev. B 89 014404
[27] Nahum A, Chalker J T, Serna P, Ortuño M and Somoza A M 2015 Phys. Rev. X 5 041048
[28] Nahum A, Serna P and Ortuño J T M 2015 A. M. Somoza Phys. Rev. Lett. 115 267203
[29] Qin Y Q, He Y Y, You Y Z, Lu Z Y, Sen A, Sandvik A W, Xu C and Meng Z Y 2017 Phys. Rev. X 7 031052
[30] Ma N, You Y Z and Meng Z Y 2019 Phys. Rev. Lett. 122 175701
[31] Senthil T and Fisher M P A 2006 Phys. Rev. B 74 064405
[32] Wang C, Nahum A, Metlitski M A, Xu C and Senthil T 2017 Phys. Rev. X 7 031051
[33] Gorbenko V, Rychkov S and Zan B 2018 J. High Energy Phys. 2018 108
[34] Ma R and Wang C 2019 arXiv:1912.12315[cond-mat.str-el]
[35] Nahum A 2019 arXiv:1912.13468[cond-mat.str-el]
[36] Gorbenko V, Rychkov S and Zan B 2018 SciPost Phys. 5 050
[37] Zhao B, Weinberg P and Sandvik A W 2019 Nat. Phys. 15 678
[38] Sandvik A W and Zhao B 2020 arXiv:2003.14305[cond-mat.str-el][hep-lat]
[39] Serna P and Nahum A 2019 Phys. Rev. B 99 195110
[40] Takahashi J and Sandvik A W 2020 arXiv:2001.10045[cond-mat.str-el]
[41] You Y Z, Bi Z and Pretko M 2020 Phys. Rev. Res. 2 013162
[42] Vishwanath A, Balents L and Senthil T 2004 Phys. Rev. B 69 224416
[43] Xu C and Balents L 2011 Phys. Rev. B 84 014402
[44] Sen A and Sandvik A W 2010 Phys. Rev. B 82 174428
[45] Banerjee A, Damle K and ParamekantiA. 2011 Phys. Rev. B 83 134419
[46] Kaul R K, Melko R G and Sandvik A W 2013 Annu. Rev. Condens. Matter Phys. 4 179
[47] Sandvik A W 2010 AIP Conf. Proc. 1297 135
[48] Beach K S D and Sandvik A W 2006 Nucl. Phys. B 750 142
[49] Shao H, Guo W and Sandvik A W 2015 Phys. Rev. B 91 094426
[50] Oshikawa M 2000 Phys. Rev. B 61 3430
[51] Lou J, Sandvik A W and Balents L 2007 Phys. Rev. Lett. 99 207203
[52] Léonard F and Delamotte B 2015 Phys. Rev. Lett. 115 200601
[53] Okubo T, Oshikawa K, Watanabe H and Kawashima N 2015 Phys. Rev. B 91 174417
[54] Shao H, Guo W and Sandvik A W 2020 Phys. Rev. Lett. 124 080602
[55] Harada K, Kawashima N and Troyer M 2003 Phys. Rev. Lett. 90 117203
[56] Beach K S D, Alet F, Mambrini M and Capponi S 2009 Phys. Rev. B 80 184401
[57] Kaul R K and Sandvik A W 2012 Phys. Rev. Lett. 108 137201
[58] Dyer E, Mezei M, Pufu S S and Sachdev S 2015 J. High Energy Phys. 2015 37; 2016 Erratum 2016 111
[59] Qin Y Q, Normand B, Sandvik A W and Meng Z Y 2017 Phys. Rev. Lett. 118 147207
[60] Shao H, Qin Y Q, Capponi S, Chesi S, Meng Z Y and Sandvik A W 2017 Phys. Rev. X 7 041072
[1] Universal order-parameter and quantum phase transition for two-dimensional q-state quantum Potts model
Yan-Wei Dai(代艳伟), Sheng-Hao Li(李生好), and Xi-Hao Chen(陈西浩). Chin. Phys. B, 2022, 31(7): 070502.
[2] Emergent O(4) symmetry at the phase transition from plaquette-singlet to antiferromagnetic order in quasi-two-dimensional quantum magnets
Guangyu Sun(孙光宇), Nvsen Ma(马女森), Bowen Zhao(赵博文), Anders W. Sandvik, and Zi Yang Meng(孟子杨). Chin. Phys. B, 2021, 30(6): 067505.
[3] Heavy fermions in high magnetic fields
M Smidman, B Shen(沈斌), C Y Guo(郭春煜), L Jiao(焦琳), X Lu(路欣), H Q Yuan(袁辉球). Chin. Phys. B, 2019, 28(1): 017106.
[4] Monogamy quantum correlation near the quantum phase transitions in the two-dimensional XY spin systems
Meng Qin(秦猛), Zhongzhou Ren(任中洲), Xin Zhang(张欣). Chin. Phys. B, 2018, 27(6): 060301.
[5] Fidelity spectrum: A tool to probe the property of a quantum phase
Wing Chi Yu, Shi-Jian Gu. Chin. Phys. B, 2016, 25(3): 030501.
No Suggested Reading articles found!