Special Issue:
Virtual Special Topic — Magnetism and Magnetic Materials
|
|
|
Tunable deconfined quantum criticality and interplay of different valence-bond solid phases |
Bowen Zhao(赵博文)1, Jun Takahashi2,1, Anders W. Sandvik1,2 |
1 Department of Physics, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, USA; 2 Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China |
|
|
Abstract We use quantum Monte Carlo simulations to study an S=1/2 spin model with competing multi-spin interactions. We find a quantum phase transition between a columnar valence-bond solid (cVBS) and a Néel antiferromagnet (AFM), as in the scenario of deconfined quantum-critical points, as well as a transition between the AFM and a staggered valence-bond solid (sVBS). By continuously varying a parameter, the sVBS-AFM and AFM-cVBS boundaries merge into a direct sVBS-cVBS transition. Unlike previous models with putative deconfined AFM-cVBS transitions, e.g., the standard J-Q model, in our extended J-Q model with competing cVBS and sVBS inducing terms the transition can be tuned from continuous to first-order. We find the expected emergent U(1) symmetry of the microscopically Z4 symmetric cVBS order parameter when the transition is continuous. In contrast, when the transition changes to first-order, the clock-like Z4 fluctuations are absent and there is no emergent higher symmetry. We argue that the confined spinons in the sVBS phase are fracton-like. We also present results for an SU(3) symmetric model with a similar phase diagram. The new family of models can serve as a useful tool for further investigating open questions related to deconfined quantum criticality and its associated emergent symmetries.
|
Received: 18 March 2020
Revised: 02 April 2020
Accepted manuscript online:
|
PACS:
|
75.10.Jm
|
(Quantized spin models, including quantum spin frustration)
|
|
64.70.Tg
|
(Quantum phase transitions)
|
|
75.40.Mg
|
(Numerical simulation studies)
|
|
75.30.Kz
|
(Magnetic phase boundaries (including classical and quantum magnetic transitions, metamagnetism, etc.))
|
|
Fund: Project supported by the NSF under Grant No. DMR-1710170 and by a Simons Investigator Grant. |
Corresponding Authors:
Anders W. Sandvik
E-mail: sandvik@bu.edu
|
Cite this article:
Bowen Zhao(赵博文), Jun Takahashi, Anders W. Sandvik Tunable deconfined quantum criticality and interplay of different valence-bond solid phases 2020 Chin. Phys. B 29 057506
|
[1] |
Manousakis E 1991 Rev. Mod. Phys. 63 1
|
[2] |
Haldane F D M 1988 Phys. Rev. Lett. 61 1029
|
[3] |
Chakravarty S, Halperin B I and Nelson D R 1989 Phys. Rev. B 39 2344
|
[4] |
Sachdev S 2008 Nat. Phys. 4 173
|
[5] |
Dagotto E and Moreo A 1989 Phys. Rev. Lett. 63 2148
|
[6] |
Read N and Sachdev S 1989 Phys. Rev. Lett. 62 1694
|
[7] |
Read N and Sachdev S 1990 Phys. Rev. B 42 4568
|
[8] |
Murthy G and Sachdev S 1990 Nucl. Phys. B 344 557
|
[9] |
Senthil T, Vishwanath A, Balents L, Sachdev S and Fisher M P A 2004 Science 303 1490
|
[10] |
Levin M and Senthil T 2004 Phys. Rev. B 70 220403
|
[11] |
Sandvik A W 2007 Phys. Rev. Lett. 98 227202
|
[12] |
Sandvik A W 2012 Phys. Rev. B 85 134407
|
[13] |
Jiang F J, Nyfeler M, Chandrasekharan S and Wiese U J 2008 J. Stat. Mech.: Theory Exp. 2008 P02009
|
[14] |
Sandvik A W 2010 Phys. Rev. Lett. 104 177201
|
[15] |
Chen K, Huang Y, Deng Y, Kuklov A B, Prokofev N V and Svistunov B V 2013 Phys. Rev. Lett. 110 185701
|
[16] |
Melko R G and Kaul R K 2008 Phys. Rev. Lett. 100 017203
|
[17] |
Lou J, Sandvik A W and Kawashima N 2009 Phys. Rev. B 80 180414(R)
|
[18] |
Kaul R K 2011 Phys. Rev. B 84 054407
|
[19] |
Harada K, Suzuki T, Okubo T, Matsuo H, Lou J, Watanabe H, Todo S and Kawashima N 2013 Phys. Rev. B 88 220408(R)
|
[20] |
Block M S, Melko R G and Kaul R K 2013 Phys. Rev. Lett. 111 137202
|
[21] |
Pujari S, Alet F and Damle K 2015 Phys. Rev. B 91 104411
|
[22] |
Suwa H, Sen A and Sandvik A W 2016 Phys. Rev. B 94 144416
|
[23] |
Shao H, Guo W and Sandvik A W 2016 Science 352 213
|
[24] |
Ma N, Sun G Y, You Y Z, Xu C K, Vishwanath A, Sandvik A W and Meng Z Y 2018 Phys. Rev. B 98 174421
|
[25] |
Kuklov A B, Matsumoto M, Prokofev N V, Svistunov B V and Troyer M 2008 Phys. Rev. Lett. 101 050405
|
[26] |
Sreejith G J and Powell S 2014 Phys. Rev. B 89 014404
|
[27] |
Nahum A, Chalker J T, Serna P, Ortuño M and Somoza A M 2015 Phys. Rev. X 5 041048
|
[28] |
Nahum A, Serna P and Ortuño J T M 2015 A. M. Somoza Phys. Rev. Lett. 115 267203
|
[29] |
Qin Y Q, He Y Y, You Y Z, Lu Z Y, Sen A, Sandvik A W, Xu C and Meng Z Y 2017 Phys. Rev. X 7 031052
|
[30] |
Ma N, You Y Z and Meng Z Y 2019 Phys. Rev. Lett. 122 175701
|
[31] |
Senthil T and Fisher M P A 2006 Phys. Rev. B 74 064405
|
[32] |
Wang C, Nahum A, Metlitski M A, Xu C and Senthil T 2017 Phys. Rev. X 7 031051
|
[33] |
Gorbenko V, Rychkov S and Zan B 2018 J. High Energy Phys. 2018 108
|
[34] |
Ma R and Wang C 2019 arXiv:1912.12315[cond-mat.str-el]
|
[35] |
Nahum A 2019 arXiv:1912.13468[cond-mat.str-el]
|
[36] |
Gorbenko V, Rychkov S and Zan B 2018 SciPost Phys. 5 050
|
[37] |
Zhao B, Weinberg P and Sandvik A W 2019 Nat. Phys. 15 678
|
[38] |
Sandvik A W and Zhao B 2020 arXiv:2003.14305[cond-mat.str-el][hep-lat]
|
[39] |
Serna P and Nahum A 2019 Phys. Rev. B 99 195110
|
[40] |
Takahashi J and Sandvik A W 2020 arXiv:2001.10045[cond-mat.str-el]
|
[41] |
You Y Z, Bi Z and Pretko M 2020 Phys. Rev. Res. 2 013162
|
[42] |
Vishwanath A, Balents L and Senthil T 2004 Phys. Rev. B 69 224416
|
[43] |
Xu C and Balents L 2011 Phys. Rev. B 84 014402
|
[44] |
Sen A and Sandvik A W 2010 Phys. Rev. B 82 174428
|
[45] |
Banerjee A, Damle K and ParamekantiA. 2011 Phys. Rev. B 83 134419
|
[46] |
Kaul R K, Melko R G and Sandvik A W 2013 Annu. Rev. Condens. Matter Phys. 4 179
|
[47] |
Sandvik A W 2010 AIP Conf. Proc. 1297 135
|
[48] |
Beach K S D and Sandvik A W 2006 Nucl. Phys. B 750 142
|
[49] |
Shao H, Guo W and Sandvik A W 2015 Phys. Rev. B 91 094426
|
[50] |
Oshikawa M 2000 Phys. Rev. B 61 3430
|
[51] |
Lou J, Sandvik A W and Balents L 2007 Phys. Rev. Lett. 99 207203
|
[52] |
Léonard F and Delamotte B 2015 Phys. Rev. Lett. 115 200601
|
[53] |
Okubo T, Oshikawa K, Watanabe H and Kawashima N 2015 Phys. Rev. B 91 174417
|
[54] |
Shao H, Guo W and Sandvik A W 2020 Phys. Rev. Lett. 124 080602
|
[55] |
Harada K, Kawashima N and Troyer M 2003 Phys. Rev. Lett. 90 117203
|
[56] |
Beach K S D, Alet F, Mambrini M and Capponi S 2009 Phys. Rev. B 80 184401
|
[57] |
Kaul R K and Sandvik A W 2012 Phys. Rev. Lett. 108 137201
|
[58] |
Dyer E, Mezei M, Pufu S S and Sachdev S 2015 J. High Energy Phys. 2015 37; 2016 Erratum 2016 111
|
[59] |
Qin Y Q, Normand B, Sandvik A W and Meng Z Y 2017 Phys. Rev. Lett. 118 147207
|
[60] |
Shao H, Qin Y Q, Capponi S, Chesi S, Meng Z Y and Sandvik A W 2017 Phys. Rev. X 7 041072
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|