CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Charge compensation and capacity fading in LiCoO2 at high voltage investigated by soft x-ray absorption spectroscopy |
Xing-Hui Long(龙兴辉)1,2,3, Yan-Ru Wu(吴颜如)1,2,3, Nian Zhang(张念)1,2, Peng-Fei Yu(于鹏飞)1,2, Xue-Fei Feng(冯雪飞)4, Shun Zheng(郑顺)1,2,3, Jia-Min Fu(傅佳敏)1,2,5, Xiao-Song Liu(刘啸嵩)1,2,5, Na Liu(柳娜)6, Meng Wang(王梦)6, Lei-Min Xu(徐磊敏)6, Jin-Ming Chen(陈锦明)7, Jenn-Min Lee(李振民)7 |
1 State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China;
2 Center for Excellence in Superconducting Electronics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China;
3 University of Chinese Academy of Sciences, Beijing 100049, China;
4 Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA;
5 School of Physical Science and Technology, Shanghai Tech University, Shanghai 200031, China;
6 NingDe Amperex Technology Limited, Ningde 352100, China;
7 "National" Synchrotron Radiation Research Centre, Hsinchu 30076, Taiwan, China |
|
|
Abstract In order to obtain an in-depth insight into the mechanism of charge compensation and capacity fading in LiCoO2, the evolution of electronic structure of LiCoO2 at different cutoff voltages and after different cycles are studied by soft x-ray absorption spectroscopy in total electron (TEY) and fluorescence (TFY) detection modes, which provide surface and bulk information, respectively. The spectra of Co L2,3-edge indicate that Co contributes to charge compensation below 4.4 V. Combining with the spectra of O K-edge, it manifests that only O contributes to electron compensation above 4.4 V with the formation of local O 2p holes both on the surface and in the bulk, where the surficial O evolves more remarkably. The evolution of the O 2p holes gives an explanation to the origin of O2- or even O2. A comparison between the TEY and TFY of O K-edge spectra of LiCoO2 cycled in a range from 3 V to 4.6 V indicates both the structural change in the bulk and aggregation of lithium salts on the electrode surface are responsible for the capacity fading. However, the latter is found to play a more important role after many cycles.
|
Received: 17 May 2018
Revised: 03 July 2018
Accepted manuscript online:
|
PACS:
|
78.70.Dm
|
(X-ray absorption spectra)
|
|
82.47.Aa
|
(Lithium-ion batteries)
|
|
82.30.-b
|
(Specific chemical reactions; reaction mechanisms)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 21503263, U1632269, 21473235, and 11227902). |
Corresponding Authors:
Peng-Fei Yu
E-mail: ypfaq@mail.sim.ac.cn
|
Cite this article:
Xing-Hui Long(龙兴辉), Yan-Ru Wu(吴颜如), Nian Zhang(张念), Peng-Fei Yu(于鹏飞), Xue-Fei Feng(冯雪飞), Shun Zheng(郑顺), Jia-Min Fu(傅佳敏), Xiao-Song Liu(刘啸嵩), Na Liu(柳娜), Meng Wang(王梦), Lei-Min Xu(徐磊敏), Jin-Ming Chen(陈锦明), Jenn-Min Lee(李振民) Charge compensation and capacity fading in LiCoO2 at high voltage investigated by soft x-ray absorption spectroscopy 2018 Chin. Phys. B 27 107802
|
[1] |
Mizushima K, Jones P C, Wiseman P J and Goodenough J B 1980 Mater. Res. Bull. 15 783
|
[2] |
Ozawa K 1994 Solid State Ionics 69 212
|
[3] |
Luo W and Dahn J R 2009 Electrochim. Acta 54 4655
|
[4] |
Chen Z, Lu Z and Dahn J R 2002 J. Electrochem. Soc. 149 A1604
|
[5] |
Jang Y I, Dudney N J, Blom D A and Allard L F 2002 J. Electrochem. Soc. 149 A1442
|
[6] |
Aurbach D, Markovsky B, Rodkin A, Levi E, Cohen Y S, Kim H J and Schmidt M 2002 Electrochim. Acta 47 4291
|
[7] |
Choi S S and Lim H S 2002 J. Power Sources 111 130
|
[8] |
Zhang L, Wang L, Lyu C, Li J and Zheng J 2014 Energies 7 6282
|
[9] |
Wang Z, Wang Z, Peng W, Guo H, Li X, Wang J and Qi A 2014 Ionics 20 1525
|
[10] |
Tebbe J L, Holder A M and Musgrave C B 2015 ACS Appl. Mater. Interfaces 7 24265
|
[11] |
Yano A, Shikano M, Ueda A, Sakaebe H and Ogumi Z 2017 J. Electrochem. Soc. 164 A6116
|
[12] |
Zhang S, Li W J, Ling S G, Li H, Zhou Z B and Chen L Q 2015 Chin. Phys. B 24 078201
|
[13] |
Oh S, Lee J K, Byun D, Cho W I and Won Cho B 2004 J. Power Sources 132 249
|
[14] |
Sun Y K, Cho S W, Myung S T, Amine K and Prakash J 2007 Electrochim. Acta 53 1013
|
[15] |
Dai X, Wang L, Xu J, Wang Y, Zhou A and Li J 2014 ACS Appl. Mater. Interfaces 6 15853
|
[16] |
Aydinol M K, Kohan A F, Ceder G, Cho K and Joannopoulos J 1997 Phys. Rev. B 56 1354
|
[17] |
Ceder G, Chiang Y M, Sadoway D R, Aydinol M K, Jang Y I and Huang B 1998 Nature 392 694
|
[18] |
Goodenough J B and Kim Y 2010 Chem. Mater. 22 587
|
[19] |
Laubach S, Laubach S, Schmidt P C, Ensling D, Schmid S, Jaegermann W, Thißen A, Nikolowski K and Ehrenberg H 2009 Phys. Chem. Chem. Phys. 11 3278
|
[20] |
Ling S G, Gao J, Xiao R J and Chen L Q 2016 Chin. Phys. B 25 018208
|
[21] |
Yang W, Liu X, Qiao R, Olalde-Velasco P, Spear J D, Roseguo L, Pepper J X, Chuang Y D, Denlinger J D and Hussain Z 2013 J. Electron. Spectrosc. Relat. Phenom. 190 64
|
[22] |
Kemp J P and Cox P A 1990 J. Phys.:Condens. Matter 2 15
|
[23] |
Galakhov V R, Kurmaev E Z, Uhlenbrock S, Neumann M, Kellerman D G and Gorshkov V S 1996 Solid State Commun. 99 221
|
[24] |
Montoro L A, Abbate M, Almeida E C and Rosolen J M 1999 Chem. Phys. Lett. 309 14
|
[25] |
Montoro L A, Abbate M and Rosolen J M 1999 Electrochem. Solid-State Lett. 3 410
|
[26] |
Uchimoto Y, Sawada H and Yao T 2001 J. Synchrotron Rad. 8 872
|
[27] |
Graetz J, Hightower A, Ahn C C, Yazami R, Rez P and Fultz B 2002 J. Phys. Chem. B 106 1286
|
[28] |
Yoon W S, Kim K B, Kim M G, Lee M K, Shin H J, Lee J M, Lee J S and Yo C H 2002 J. Phys. Chem. B 106 2526
|
[29] |
Yoon W S, Kim K B, Kim M G, Lee M K, Shin H J and Lee J M 2002 J. Electrochem. Soc. 149 A1305
|
[30] |
Chen C H, Hwang B J, Chen C Y, Hu S K, Chen J M, Sheu H S and Lee J F 2007 J. Power Sources 174 938
|
[31] |
Dahéron L, Dedryvére R, Martinez H, Ménétrier M, Denage C, Delmas C and Gonbeau D 2008 Chem. Mater. 20 583
|
[32] |
Dahéron L, Martinez H, Dedryvére R, Baraille I, Ménétrier M, Denage C, Delmas C and Gonbeau D 2009 J. Phys. Chem. C 113 5843
|
[33] |
Taguchi N, Sakaebe H, Tatsumi K and Akita T 2015 E-J. Surf. Sci. Nanotech. 13 284
|
[34] |
Liu X, Liu J, Qiao R, Yu Y, Li H, Suo L, Hu Y S, Chuang Y D, Shu G, Chou F, Weng T C, Nordlund D, Sokaras D, Wang Y J, Lin H, Barbiellini B, Bansil A, Song X, Liu Z, Yan S, Liu G, Qiao S, Richardson T J, Prendergast D, Hussain Z, de Groot F M F and Yang W 2012 J. Am. Chem. Soc. 134 13708
|
[35] |
Liu X, Wang D, Liu G, Srinivasan V, Liu Z, Hussain Z and Yang W 2013 Nat. Commun. 4 2568
|
[36] |
Liu X, Yang W and Liu Z 2014 Adv. Mater. 26 7710
|
[37] |
Liu X, Wang Y J, Barbiellini B, Hafiz H, Basak S, Liu J, Richardson T, Shu G, Chou F, Weng T C, Nordlund D, Sokaras D, Moritz B, Devereaux T P, Qiao R, Chuang Y D, Bansil A, Hussain Z and Yang W 2015 Phys. Chem. Chem. Phys. 17 26369
|
[38] |
Qiao R, Wray L A, Kim J H, Pieczonka N P W, Harris S J and Yang W 2015 J. Phys. Chem. C 119 27228
|
[39] |
Wang L, Song J, Qiao R, Wray L A, Hossain M A, Chuang Y D, Yang W, Lu Y, Evans D, Lee J J, Vail S, Zhao X, Nishijima M, Kakimoto S and Goodenough J B 2015 J. Am. Chem. Soc. 137 2548
|
[40] |
Yang W and Qiao R 2016 Chin. Phys. B 25 017104
|
[41] |
Mizokawa T, Wakisaka Y, Sudayama T, Iwai C, Miyoshi K, Takeuchi J, Wadati H, Hawthorn D G, Regier T Z and Sawatzky G A 2013 Phys. Rev. Lett. 111 056404
|
[42] |
Kumagai Y, Ikeno H, Oba F, Matsunaga K and Tanaka I 2008 Phys. Rev. B 77 155124
|
[43] |
Merz M, Nagel P, Pinta C, Samartsev A, v. Löhneysen H, Wissinger M, Uebe S, Assmann A, Fuchs D and Schuppler S 2010 Phys. Rev. B 82 174416
|
[44] |
Mesilov V V, Galakhov V R, Gizhevskii B A, Semenova A S, Kellerman D G, Raekers M and Neumann M 2013 Phys. Solid State 55 943
|
[45] |
van Elp J, Wiel, J L, Eskes H, Kuiper P, Sawatzky G A, de Groot F M F and Turner T S 1991 Phys. Rev. B 44 6090
|
[46] |
Cao K, Jiao L, Liu Y, Liu H, Wang Y and Yuan H 2015 Adv. Funct. Mater. 25 1082
|
[47] |
Kang Q, Cao L, Li J, Huang J, Xu Z, Cheng Y, Wang X, Bai J and Li Q 2016 Ceram. Int. 42 15920
|
[48] |
Bora D K, Cheng X, Kapilashrami M, Glans P A, Luo Y and Guo J H 2015 J. Synchrotron Rad. 22 1450
|
[49] |
Wolverton C and Zunger A 1998 Phys. Rev. Lett. 81 606
|
[50] |
Lee J, Papp J K, Clément R J, Sallis S, Kwon D H, Shi T, Yang W, McCloskey B D and Ceder G 2017 Nat. Commun. 8 981
|
[51] |
Luo K, Roberts M R, Hao R, Guerrini N, Pickup D M, Liu Y S, Edström K, Guo J, Chadwick A V, Duda L C and Bruce P G 2016 Nat. Chem. 8 684
|
[52] |
Xu J, Sun M, Qiao R, Renfrew S E, Ma L, Wu T, Hwang S, Nordlund D, Su D, Amine K, Lu J, McCloskey B D, Yang W and Tong W 2018 Nat. Commun. 9 947
|
[53] |
Kang J S, Kim D H, Hwang J H, Baik J, Shin H J, Kim M, Jeong Y H and Min B I 2010 Phys. Rev. B 82 193102
|
[54] |
Oishi M, Yamanaka K, Watanabe I, Shimoda K, Matsunaga T, Arai H, Ukyo Y, Uchimoto Y, Ogumi Z and Ohta T 2016 J. Mater. Chem. A 4 9293
|
[55] |
Outka D A, Stöhr J, Madix R J, Rotermund H H, Hermsmeier B and Solomon J 1987 Surf. Sci. 185 53
|
[56] |
Yogi C, Takamatsu D, Yamanaka K, Arai H, Uchimoto Y, Kojima K, Watanabe I, Ohta T and Ogumi Z 2014 J. Power Sources 248 994
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|