Hopf bifurcation control of a Pan-like chaotic system
Liang Zhang(张良)1, JiaShi Tang(唐驾时)1, Qin Han(韩芩)2
1 College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, China;
2 College of Mechanical Engineering, Wuchang Institute of Technology, Wuhan 430065, China
This paper is concerned with the Hopf bifurcation control of a modified Pan-like chaotic system. Based on the Routh-Hurwtiz theory and high-dimensional Hopf bifurcation theory, the existence and stability of the Hopf bifurcation depending on selected values of the system parameters are studied. The region of the stability for the Hopf bifurcation is investigated. By the hybrid control method, a nonlinear controller is designed for changing the Hopf bifurcation point and expanding the range of the stability. Discussions show that with the change of parameters of the controller, the Hopf bifurcation emerges at an expected location with predicted properties and the range of the Hopf bifurcation stability is expanded. Finally, numerical simulation is provided to confirm the analytic results.
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.