Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(6): 068301    DOI: 10.1088/1674-1056/27/6/068301
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Electrical field-driven ripening profiles of colloidal suspensions

Zi-Rui Wang(王子瑞)1, Wei-Jia Wen(温维佳)2, Li-Yu Liu(刘雳宇)1
1 College of Physics, Chongqing University, Chongqing 401331, China;
2 Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
Abstract  

Electrorheological (ER) fluid is a type of smart fluid whose shear yield stress relies on the external electrical field strength. The transition of ER fluid microstructure driven by the electrical field is the reason why viscosity changes. Experimentally, the transparent electrodes are used to investigate the column size distribution where an external electric field is applied to a colloidal suspension, i.e., ER fluid is increased. The coarsening profile of ER suspensions is strongly related to electrical field strength, but it is insensitive to particle size. In addition, in a low field range the shear stress corresponding to the mean column diameter is studied and they are found to satisfy a power law. However, this dependence is invalid when the field strength surpasses a threshold value.

Keywords:  electrorheological fluid      electrical field      coarsening structure  
Received:  02 February 2018      Revised:  05 March 2018      Accepted manuscript online: 
PACS:  83.60.Np (Effects of electric and magnetic fields)  
  83.80.Gv (Electro- and magnetorheological fluids)  
  83.80.Hj (Suspensions, dispersions, pastes, slurries, colloids)  
  61.30.Gd (Orientational order of liquid crystals; electric and magnetic field effects on order)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos.11474345 and 11674043).

Corresponding Authors:  Li-Yu Liu     E-mail:  lyliu@cqu.edu.cn

Cite this article: 

Zi-Rui Wang(王子瑞), Wei-Jia Wen(温维佳), Li-Yu Liu(刘雳宇) Electrical field-driven ripening profiles of colloidal suspensions 2018 Chin. Phys. B 27 068301

[1] Block H P and Kelly J P 1988 J. Phy. D:Appl. Phys. 21 1661
[2] Wen W, Huang X, Yang S, Lu K and Sheng P 2003 Nat. Mater. 2 727
[3] Lu K, Shen R, Wang X, Sun G, Wen W and Liu J 2006 Chin. Phys. 15 2476
[4] Davis L C 1992 Appl. Phys. Lett. 60 319
[5] See H, Tamura H and Doi M 1993 J. Phys. D:Appl. Phys. 26 746
[6] Chen Y, Sprecher A F and Conrad H 1991 J. Appl. Phys. 70 6796
[7] Halsey T C and Toor W 1990 Phys. Rev. Lett. 65 2820
[8] Wu C W and Conrad H 1997 J. Phys. D:Appl. Phys. 30 2634
[9] Tao R and Sun J M 1991 Phys. Rev. Lett. 67 398
[10] Parthasarathy M and Klingenberg D J 1996 Mater. Sci. Eng. R 17 57
[11] Cao J, Huang J and Zhou L 2006 J. Phys. Chem. B 110 11635
[12] Huang M, Zhao X, Wang B, Yin B and Cao C 2004 Acta Phys. Sin. 53 1895 (in Chinese)
[13] Zhou J, Mo J, Shao C and Li Z 2015 J. Magn. Magn. Mater. 389 124
[14] Climent E, Maxey M R and Karniadakis G E 2004 Langmuir 20 507
[15] Wu J, Pei L, Xuan S, Yan Q and Gong X 2016 J. Magn. Magn. Mater. 408 18
[16] Rodríguez-López J, Castro P, Elvira L and de Espinosa F M 2015 Ultrasonics 61 10
[17] Klingenberg D J, Ulicny J C and Golden M A 2007 J. Rheol. 51 883
[18] Ukai T, Morimoto H and Maekawa T 2011 Phys. Rev. E 83 061406
[19] Kittipoomwong D, Klingenberg D J, Shkel Y M, Morris J F and Ulicny J C 2008 J. Rheol. 52 225
[20] Seo Y P and Seo Y 2012 Langmuir 28 3077
[21] Qian B, Mckinley G H and Hosoi A E 2013 Soft Matter 9 2889
[22] Wen W, Zheng D W and Tu K N 1998 Phys. Rev. E 57 4516
[23] Wen W, Zheng D W and Tu K N 1999 J. Appl. Phys. 85 530
[24] Wen W, Huang X and Sheng P 2008 Soft Matter 4 200
[25] Sheng P and Wen W 2012 Ann. Rev. Fluid Mech. 44 143
[1] The origin of distorted intensity pattern sensed by a lens and antenna coupled AlGaN/GaN-HEMT terahertz detector
Xiang Li(李想), Jian-Dong Sun(孙建东), Hong-Juan Huang(黄宏娟), Zhi-Peng Zhang(张志鹏), Lin Jin(靳琳), Yun-Fei Sun(孙云飞), V V Popov, Hua Qin(秦华). Chin. Phys. B, 2019, 28(11): 118502.
[2] The electric field and frequency responses of giant electrorheological fluids
Hanqing Zhao(赵汉青), Rong Shen(沈容), Kunquan Lu(陆坤权). Chin. Phys. B, 2018, 27(7): 078301.
[3] Self-sustained firing activities of the cortical network with plastic rules in weak AC electrical fields
Qin Ying-Mei(秦迎梅), Wang Jiang(王江), Men Cong(门聪), Zhao Jia(赵佳), Wei Xi-Le(魏熙乐), and Deng Bin(邓斌) . Chin. Phys. B, 2012, 21(7): 078702.
[4] Polar molecule dominated electrorheological effect
Lu Kun-Quan(陆坤权), Shen Rong(沈容), Wang Xue-Zhao(王学昭), Sun Gang(孙刚), Wen Wei-Jia(温维佳), and Liu Ji-Xing(刘寄星). Chin. Phys. B, 2006, 15(11): 2476-2480.
[5] Many-body dipole-induced dipole model for electrorheological fluids
Huang Ji-Ping (黄吉平), Yu Kin-Wah (余建华). Chin. Phys. B, 2004, 13(7): 1065-1069.
[6] ANALYSIS OF PARTICLE-PARTICLE FORCES IN ELECTRORHEOLOGICAL FLUIDS
Zhao He-ping (赵鹤平), Liu Zheng-you (刘正猷), Liu You-yan (刘有延). Chin. Phys. B, 2001, 10(1): 35-39.
[7] RESONANCE RESPONSE OF ELECTRORHEOLOGICAL FLUIDS IN VERTICAL OSCILLATION SQUEEZE FLOW
Liu Li-wei (刘立伟), Wang Zuo-wei (王作维), Liu Ge (刘戈), Jiang Yong-gang (蒋勇刚), Qiu Zhi-yong (邱志勇), Zhou Lu-wei (周鲁卫). Chin. Phys. B, 2000, 9(12): 944-948.
No Suggested Reading articles found!