Special Issue:
TOPICAL REVIEW — Soft matter and biological physics
|
TOPIC REVIEW—Soft matter and biological physics |
Prev
Next
|
|
|
Bio-macromolecular dynamic structures and functions, illustrated with DNA, antibody, and lipoprotein |
Lu Gou(缑璐), Taoli Jin(金桃丽), Shuyu Chen(陈淑玉), Na Li(李娜), Dongxiao Hao(郝东晓), Shengli Zhang(张胜利), Lei Zhang(张磊) |
Department of Applied Physics, School of Science, Xi'an Jiaotong University, Xi'an 710049, China |
|
|
Abstract Bio-macromolecules, such as proteins and nucleic acids, are the basic materials that perform fundamental activities required for life. Their structural heterogeneities and dynamic personalities are vital to understand the underlying functional mechanisms of bio-macromolecules. With the rapid development of advanced technologies such as single-molecule technologies and cryo-electron microscopy (cryo-EM), an increasing number of their structural details and mechanics properties at molecular level have significantly raised awareness of basic life processes. In this review, firstly the basic principles of single-molecule method and cryo-EM are summarized, to shine a light on the development in these fields. Secondly, recent progress driven by the above two methods are underway to explore the dynamic structures and functions of DNA, antibody, and lipoprotein. Finally, an outlook is provided for the further research on both the dynamic structures and functions of bio-macromolecules, through single-molecule method and cryo-EM combining with molecular dynamics simulations.
|
Received: 31 August 2017
Revised: 13 December 2017
Accepted manuscript online:
|
|
Fund: Project supported by the National Basic Research Program of China (Grant No. 2015CB856304) and the National Natural Science Foundation of China (Grant Nos. 11504287 and 11774279). |
Corresponding Authors:
Lei Zhang
E-mail: zhangleio@mail.xjtu.edu.cn
|
About author: 87.64.Ee; 87.80.-y 87.15.B-; 87.15.H- |
Cite this article:
Lu Gou(缑璐), Taoli Jin(金桃丽), Shuyu Chen(陈淑玉), Na Li(李娜), Dongxiao Hao(郝东晓), Shengli Zhang(张胜利), Lei Zhang(张磊) Bio-macromolecular dynamic structures and functions, illustrated with DNA, antibody, and lipoprotein 2018 Chin. Phys. B 27 028708
|
[1] |
Qian H, Chen H and Yan J 2016 Acta Phys. Sin. 65 188706(in Chinese)
|
[2] |
Mannige R V 2014 Proteomes 2 128
|
[3] |
Ritort F 2006 J. Phys.:Condens. Matter 18 R531
|
[4] |
Ha T, Enderle T, Ogletree D F, Chemla D S, Selvin P R and Weiss S 1996 Proc. Natl. Acad. Sci. USA 93 6264
|
[5] |
McLoughlin S Y, Kastantin M, Schwartz D K and Kaar J L 2013 Proc. Natl. Acad. Sci. USA 110 19396
|
[6] |
Dai Y W, Seeger M, Weng J W, Song S, Wang W N and Tan Y W 2016 Sci. Rep.-Uk 6 30282
|
[7] |
Roy R, Hohng S and Ha T 2008 Nat. Methods 5 507
|
[8] |
Goldman E R, Anderson G P, Tran P T, Mattoussi H, Charles P T and Mauro J M 2002 Anal. Chem. 74 841
|
[9] |
Cosgriff E C, Oxley M P, Allen L J and Pennycook S J 2005 Ultramicroscopy 102 317
|
[10] |
Alivisator A P, Gu W W and Larabell C 2005 Annu. Rev. Biomed. Eng. 7 56
|
[11] |
Qiu X and Hildebrandt N 2016 Proc. SPIE 9722 972218
|
[12] |
Hohng S, Joo C and Ha T 2004 Biophys. J. 87 1328
|
[13] |
Li Y, Qian Z Y, Ma L, Hu S X, Nong D G, Xu C H, Ye F F, Lu Y, Wei G H and Li M 2016 Nat. Commun. 7 12906
|
[14] |
Curtis J E, Koss B A and Grier D G 2002 Opt. Commun. 207 169
|
[15] |
Ashkin A, Dziedzic J M, Bjorkholm J E and Chu S 1986 Opt. Lett. 11 288
|
[16] |
Lim C T, Zhou E H, Li A, Vedula S R K and Fu H X 2006 Mat. Sci. Eng. C Bio S 26 1278
|
[17] |
Fazal F M and Block S M 2011 Nat. Photon. 5 318
|
[18] |
Rocha M S 2015 Integr. Biol. 7 967
|
[19] |
Fu H, Chen H, Koh C and Lim C 2009 Eur. Phys. J. E 29 45
|
[20] |
Shundrovsky A, Smith C L, Lis J T, Peterson C L and Wang M D 2006 Nat. Struct. Mol. Biol. 13 549
|
[21] |
Neuman K C and Nagy A 2008 Nat. Method. 5 491
|
[22] |
Kim K and Saleh O A 2009 Nucleic Acids Res. 37 e136
|
[23] |
De Vlaminck I and Dekker C 2012 Ann. Rev. Biophys. 41 453
|
[24] |
Chen H, Fu H X, Zhu X Y, Cong P W, Nakamura F and Yan J 2011 Biophys. J. 100 517
|
[25] |
Leuba S H, Wheeler T B, Cheng C M, LeDuc P R, Fernandez-Sierra M and Quinones 2009 Methods 47 214
|
[26] |
Hinterdorfer P and Dufrene Y F 2006 Nat. Methods 3 347
|
[27] |
Willemsen O H, Snel M M, Cambi A, Greve J, De Grooth B G and Figdor C G 2000 Biophys. J. 79 3267
|
[28] |
Hapala P, Kichin G, Wagner C, Tautz F S, Temirov R and Jelinek P 2014 Phys. Rev. B 90 226101
|
[29] |
Li L, Chen S, Oh S and Jiang S 2002 Anal. Chem. 74 6017
|
[30] |
Dufrene Y F, Martinez-Martin D, Medalsy I, Alsteens D and Muller D J 2013 Nat. Methods 10 847
|
[31] |
Lee G U, Chrisey L A and Colton R J 1994 Science 266 771
|
[32] |
Lyubchenko Y L 2011 Micron 42 196
|
[33] |
Santos N C and Castanho M A R B 2004 Biophy. Chem. 107 133
|
[34] |
Ma Z, Kim Y J, Park S, Hirai Y, Tsuchiya T, Kim D N and Tabata O 2015 IEEE 10 th International Conference on Nano/Micro Engineered and Molecular Systems (NEMS) 581
|
[35] |
Venien-Bryan C, Li Z, Vuillard L and Boutin J A 2017 Acta Crystallogr. F. 73 174
|
[36] |
Ercius P, Alaidi O, Rames M J and Ren G 2015 Adv. Mater. 27 5638
|
[37] |
Scheres S H 2012 J. Struct. Biol. 180 519
|
[38] |
Punjani A, Rubinstein J L, Fleet D J and Brubaker M A 2017 Nat. Methods 14 290
|
[39] |
Guo F and Jiang W 2014 Methods Mol. Biol. 1117 401
|
[40] |
Shen H Z, Zhou Q, Pan X J, Li Z Q, Wu J P and Yan N 2017 Science 355 924
|
[41] |
Chang S H, Sun D P, Liang H H, Wang J, Li J, Guo L, Wang X L, Guan C C, Boruah B M, Yuan L M, Feng F, Yang M R, Wang L L, Wang Y, Wojdyla J, Li L J, Wang J W, Wang M T, Cheng G H, Wang H W and Liu Y F 2015 Mol. Cell 57 925
|
[42] |
Yu X K, Jin L and Zhou Z H 2008 Nature 453 415
|
[43] |
Liao M F, Cao E H, Julius D and Cheng Y F 2013 Nature 504 107
|
[44] |
Chen S B, Wu J Y, Lu Y, Ma Y B, Lee B H, Yu Z, Ouyang Q, Finley D J, Kirschner M W and Mao Y D 2016 Proc. Natl. Acad. Sci. USA 113 12991
|
[45] |
Wu J, Ma Y B, Congdon C, Brett B, Chen S, Xu Y, Ouyang Q and Mao Y 2017 Plos One 12 e0182130
|
[46] |
Lu Y, Wu J, Dong Y, Chen S, Sun S, Ma Y B, Ouyang Q, Finley D, Kirschner M W and Mao Y 2017 Mol. Cell 67 322
|
[47] |
Zhang L, Yan F, Zhang S L, Lei D S, Charles M A, Cavigiolio G, Oda M, Krauss R M, Weisgraber K H, Rye K A, Pownall H J, Qiu X Y and Ren G 2012 Nat. Chem. Biol. 8 342
|
[48] |
Zhang L and Ren G 2012 Plos One 7 e30249
|
[49] |
Garewal M, Zhang L and Ren G 2013 Methods Mol. Biol. 974 111
|
[50] |
Zhang L, Song J, Cavigiolio G, Ishida B Y, Zhang S L, Kane J P, Weisgraber K H, Oda M N, Rye K A, Pownall H J and Ren G 2011 J. Lipid Res. 52 175
|
[51] |
Jones M K, Zhang L, Catte A, Li L, Oda M N, Ren G and Segrest J P 2010 The Journal of Biological Chemistry 285 41161
|
[52] |
Zhang L, Tong H M, Garewal M and Ren G 2013 Bba-Gen Subjects 1830 2150
|
[53] |
Tong H M, Zhang L, Kaspar A, Rames M J, Huang L Q, Woodnutt G and Ren G 2013 Sci. Rep.-Uk 3 1089
|
[54] |
Zhang L, Song J, Cavigiolio G, Ishida B Y, Zhang S L, Kane J P, Weisgraber K H, Oda M N, Rye K A, Pownall H J and Ren G 2011 J. Lipid Res. 52 175
|
[55] |
Zhang L, Song J, Newhouse Y, Zhang S L, Weisgraber K H and Ren G 2010 J. Lipid. Res. 51 1228
|
[56] |
Dashti A, Ben Hail D, Mashayekhi G, Schwander P, des Georges A, Frank J and Ourmazd A 2017 bioRxiv
|
[57] |
Dashti A, Schwander P, Langlois R, Fung R, Li W, Hosseinizadeh A, Liao H Y, Pallesen J, Sharma G, Stupina V A, Simon A E, Dinman J D, Frank J and Ourmazd A 2014 P Natl. Acad. Sci. USA 111 17492
|
[58] |
Fischer N, Konevega A L, Wintermeyer W, Rodnina M V and Stark H 2010 Nature 466 329
|
[59] |
Zhang L, Lei D S, Smith J M, Zhang M, Tong H M, Zhang X, Lu Z Y, Liu J K, Alivisatos A P and Ren G 2016 Nat. Commun. 7 11083
|
[60] |
Jonic S, Sorzano C O S and Boisset N 2008 J. Microsc.-Oxford 232 562
|
[61] |
Zhang X, Zhang L, Tong H M, Peng B, Rames M J, Zhang S L and Ren G 2015 Sci. Rep. 5 17919
|
[62] |
Jones M K, Zhang L, Catte A, Li L, Oda M N, Ren G and Segrest J P 2010 J. Biol. Chem. 285 41161
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|