CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Ce–Co-doped BiFeO3 multiferroic for optoelectronic and photovoltaic applications |
Jyoti Sharma, Deepak Basrai, A K Srivastava |
Department of Physics, Lovely Professional University, Phagwara, Punjab, India |
|
|
Abstract The Ce-Co-doped BiFeO3 multiferroic, Bi1-xCexFe1-xCoxO3 (x=0.00, 0.01, 0.03, and 0.05), has been prepared by a sol-gel auto-combustion method and analyzed through Raman spectroscopy, photoluminescence, and UV-visible spectroscopy. We have observed an anomalous intensity of the second-order Raman mode at~1260 cm-1 in pure BFO and suppressed intensity in doped samples, which indicates the presence of spin two-phonon coupling in these samples. The photoluminescence spectra show reduction in the intensity of emission with the increasing dopant concentration, which indicates the high charge separation efficiency. A sharp absorption with three charge transfer (C-T) and two d-d transitions are shown by UV-visible spectra in the visible region. The band gap of BiFeO3 (BFO) is decreasing with increasing dopant concentrations and the materials are suitable for photovoltaic applications.
|
Received: 21 May 2017
Revised: 06 July 2017
Accepted manuscript online:
|
PACS:
|
62.23.-c
|
(Structural classes of nanoscale systems)
|
|
74.25.nd
|
(Raman and optical spectroscopy)
|
|
78.55.-m
|
(Photoluminescence, properties and materials)
|
|
Corresponding Authors:
A K Srivastava
E-mail: srivastava_phy@yahoo.co.in
|
Cite this article:
Jyoti Sharma, Deepak Basrai, A K Srivastava Ce–Co-doped BiFeO3 multiferroic for optoelectronic and photovoltaic applications 2017 Chin. Phys. B 26 116201
|
[1] |
Kieliba T, Bau S, Schober R, O ß wald D, Reber S, Eyerand A and Willeke G 2002 Sol. Energy Mater. Sol. Cells 74 261
|
[2] |
Xu S, Qiu J, Jia T, Li C, Sun H and Xu Z 2007 Opt. Commun. 274 163
|
[3] |
Kalyanasundaram K and Gratzel M 1998 Coord. Chem. Rev. 177 347
|
[4] |
Cavenett B C, Prior K A and Wang S Y 1993 Mater. Sci. Eng. B 21 205
|
[5] |
Catalan G and Scott J F 2009 Adv. Mater. 21 2463
|
[6] |
Ji W, Yao K, Lim Y F, Liang Y C and Suwardi A 2013 Appl. Phys. Lett. 103 062901
|
[7] |
Gao B F, Chen X Y, Yin K B, Dong S, Ren Z F, Yuan F, Yu T, Zou Z G and Liu J M 2007 Adv. Mater. 19 2889
|
[8] |
Li S, Lin Y H, Zhang B P, Wang Y and Nan C W 2010 J. Phys. Chem. C 114 2903
|
[9] |
Grinberg I, West D V, Torres M, Gou G Y, Stein D M, Wu L Y, Chen G, Gallo E M, Akbashev A R, Davies P K, Spanier J E and Rappe A M 2013 Nature 503 509
|
[10] |
Mohan S, Subramanian B, Bhaumik I, Gupta P K and Jaisankar S N 2014 RSC Adv. 4 16871
|
[11] |
Wu S X, Fang J Z, Xu X X, Liu Z, Zhu X M and Xu W C 2012 Photochem. Photobiol. 88 1205
|
[12] |
Sakar M, Balakumar S, Saravanan P and Bharathkumar S 2015 Nanoscale 7 10667
|
[13] |
Zhang N, Chen D, Niu F, Wang S, Qin L S and Huang Y X 2016 Sci. Rep. 6 26467
|
[14] |
Pattanayak S, Chaudhary R N P and Das P R 2014 Mater. Lett. 10 165
|
[15] |
Sharma J, Bhat B H, Kumar A, Kumar S, Kaur T, Want B and Srivastava A K 2017 Materials Research Express 4 036104
|
[16] |
Yuan G L, Or S W, Chan H L W and Liu Z G 2007 J. Appl. Phys. 101 024106
|
[17] |
Yuan G L, Or S W and Chan H L W 2007 J. Phys. D 40 1196
|
[18] |
Wang J, Neaton J B, Zheng H, Nagarajan V, Ogale S B, Liu B, Viehland D, Vaithyanathan V, Schlom D G, Waghmare U V, Spaldin N A, Rabe K M, Wuttig M and Ramesh R 2003 Science 299 1719
|
[19] |
Singh S K, Ishiwara H and Maruyama K 2006 Appl. Phys. Lett. 88 262908
|
[20] |
Hermet P, Goffinet M, Kreisel J and Ghosez Ph 2007 Phys. Rev. B 75 220102
|
[21] |
Chen P, Xu X, Koenigsmann C, Santulli A C, Wong S S and Musfeldt J L 2010 Nano Lett. 10 4526
|
[22] |
Porporati A A, Tsuji K, Valant M, Axelsson A K and Pezzotti G 2010 J. Raman Spect. 41 84
|
[23] |
Bielecki J, Svedlindh P, Tibebu D T, Cai S, Eriksson S G, Borjesson L and Knee C S 2012 Phy. Rev. B 86 184422
|
[24] |
Suo L, Fang Z and Chen L 2016 Chin. Phys. B 25 016101
|
[25] |
Zhang J, Zhang D M, Zhang Q L and Yin S T 2016 Chin. Phys. B 25 037802
|
[26] |
Cao Y N, Wang G S, Tan T, Cai T D, Liu K, Wang L, Zhu G D and Mei J X 2016 Chin. Phys. B 25 107403
|
[27] |
Wang C, Wu H L, Song Y F, He X, Yang Y Q and Tan D W 2016 Chin. Phys. B 25 114210
|
[28] |
Zhou H, Gu Q, Liu B, Zhu L, Zhang L, Zhang F, Xu X, Wang Z, Sun X, Zhao X and Zhang Q 2015 Acta Phys. Sin. 64 098101(in Chinese)
|
[29] |
Zhang S 2006 Physics 35 103
|
[30] |
Porporati A A, Tsuji K, Valant M, Axelsson A K and Pezzottia G J 2010 Raman Spectrosc. 41 84
|
[31] |
Yang Y, Chen Y, Liu Y, Rui Y, Cao F, Yang A, Zu C and Yang Z 2016 Acta Phys. Sin. 65 127801(in Chinese)
|
[32] |
Yan F D, Da W H, Yong S W, Hai T X and Zhe G 2016 Acta Phys. Sin. 65 128101(in Chinese)
|
[33] |
Gui Q Y, Zhao N and Qiang Y 2007 Chin. Phys. Lett. 24 3532
|
[34] |
Yue W, Yuan W, Jian L, Hong W and Xiong H 2008 Chin. Phys. Lett. 25 3693
|
[35] |
Mei G, Feng Z, Jing L and Hui S 2009 Chin. Phys. Lett. 26 088105
|
[36] |
Hlinka J, Pokorny J, Karimi S and Reaney I M 2011 Phys. Rev. B 83 020101
|
[37] |
Ramirez M O, Krishnamurthi M, Denev S, Kumar A, Yang S Y, Chu Y H, Saiz E, Seidel J, Pyatakov A P, Bush A, Viehland D, Orenstein J, Ramesh R and Gopalan V 2008 Appl. Phys. Lett. 92 022511
|
[38] |
Tauc J 1974 Amorphous and Liquid Semiconductors (New York:Plenum Press)
|
[39] |
Liu Y, Zuo R and Qi S 2013 J. Mol. Catal. A:Chem. 376 1
|
[40] |
Mohan S, Subramanian B and Sarveswaran G 2014 J. Mater. Chem. C 2 6835
|
[41] |
Cheng W, Li F, Shu Z, Yue Y, Ding Z and Xiu S 2011 Chin. Phys. Lett. 28 110701
|
[42] |
Yue W, Yuan W, Jian L, Hong W and Xiong H 2008 Chin. Phys. Lett. 25 3693
|
[43] |
Mei G, Feng Z, Jing L and Hui S 2009 Chin. Phys. Lett. 26 088105
|
[44] |
Min C and An J 2011 Chin. Phys. Lett. 28 077701
|
[45] |
Rosnan R M, Othaman Z, Hussin R, Ati A A, Samavati A, Dabagh S and Zare S 2016 Chin. Phys. B 25 047501
|
[46] |
Pisarev R V, Moskvin A S, Kalashnikov A M and Rasing Th 2009 Phys. Rev. B 79 235128
|
[47] |
Xu X S, Brinzari T V, Lee S, Chu Y H, Martin L W, Kumar A, McGill S, Rai R C, Ramesh R, Gopalan V, Cheong S W and Musfeldt J L 2009 Phy. Rev. B 79 134425
|
[48] |
Chen P, Podraza N J, Xu X S, Melville A, Vlahos E, Gopalan V, Ramesh R, Schlom D G and Musfeldt J L 2010 Appl. Phys. Lett. 96 131907
|
[49] |
Chen P, Xu X, Koenigsmann C, Santulli A C, Wong S S and Musfeldt J L 2010 Nano Lett. 10 4526
|
[50] |
Yao Y, Li G H, Ciston S, Lueptow R M and Gray K A 2008 Environ. Sci. Technol. 42 4952
|
[51] |
Zhang N, Chen D, Niu F, Wang S, Qin L and Huang Y 2016 Sci. Rep. 6 26467
|
[52] |
Chaturvedi S, Das R, Poddar P and Kulkarni S 2015 RSC Adv. 5 23563
|
[53] |
Lei Y, Zhang L D, Meng G W, Li G H, Zhang X Y, Liang C H, Chen W and Wang S X 2001 Appl. Phys. Lett. 78 1125
|
[54] |
Suisalu A, Aarik J, Mändar H and Sildos I 1998 Thin Solid Films 336 295
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|