Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(11): 116201    DOI: 10.1088/1674-1056/26/11/116201
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Ce–Co-doped BiFeO3 multiferroic for optoelectronic and photovoltaic applications

Jyoti Sharma, Deepak Basrai, A K Srivastava
Department of Physics, Lovely Professional University, Phagwara, Punjab, India
Abstract  The Ce-Co-doped BiFeO3 multiferroic, Bi1-xCexFe1-xCoxO3 (x=0.00, 0.01, 0.03, and 0.05), has been prepared by a sol-gel auto-combustion method and analyzed through Raman spectroscopy, photoluminescence, and UV-visible spectroscopy. We have observed an anomalous intensity of the second-order Raman mode at~1260 cm-1 in pure BFO and suppressed intensity in doped samples, which indicates the presence of spin two-phonon coupling in these samples. The photoluminescence spectra show reduction in the intensity of emission with the increasing dopant concentration, which indicates the high charge separation efficiency. A sharp absorption with three charge transfer (C-T) and two d-d transitions are shown by UV-visible spectra in the visible region. The band gap of BiFeO3 (BFO) is decreasing with increasing dopant concentrations and the materials are suitable for photovoltaic applications.
Keywords:  Raman and UV-visible spectroscopy      photoluminescence and photo-voltaic applications  
Received:  21 May 2017      Revised:  06 July 2017      Accepted manuscript online: 
PACS:  62.23.-c (Structural classes of nanoscale systems)  
  74.25.nd (Raman and optical spectroscopy)  
  78.55.-m (Photoluminescence, properties and materials)  
Corresponding Authors:  A K Srivastava     E-mail:  srivastava_phy@yahoo.co.in

Cite this article: 

Jyoti Sharma, Deepak Basrai, A K Srivastava Ce–Co-doped BiFeO3 multiferroic for optoelectronic and photovoltaic applications 2017 Chin. Phys. B 26 116201

[1] Kieliba T, Bau S, Schober R, O ß wald D, Reber S, Eyerand A and Willeke G 2002 Sol. Energy Mater. Sol. Cells 74 261
[2] Xu S, Qiu J, Jia T, Li C, Sun H and Xu Z 2007 Opt. Commun. 274 163
[3] Kalyanasundaram K and Gratzel M 1998 Coord. Chem. Rev. 177 347
[4] Cavenett B C, Prior K A and Wang S Y 1993 Mater. Sci. Eng. B 21 205
[5] Catalan G and Scott J F 2009 Adv. Mater. 21 2463
[6] Ji W, Yao K, Lim Y F, Liang Y C and Suwardi A 2013 Appl. Phys. Lett. 103 062901
[7] Gao B F, Chen X Y, Yin K B, Dong S, Ren Z F, Yuan F, Yu T, Zou Z G and Liu J M 2007 Adv. Mater. 19 2889
[8] Li S, Lin Y H, Zhang B P, Wang Y and Nan C W 2010 J. Phys. Chem. C 114 2903
[9] Grinberg I, West D V, Torres M, Gou G Y, Stein D M, Wu L Y, Chen G, Gallo E M, Akbashev A R, Davies P K, Spanier J E and Rappe A M 2013 Nature 503 509
[10] Mohan S, Subramanian B, Bhaumik I, Gupta P K and Jaisankar S N 2014 RSC Adv. 4 16871
[11] Wu S X, Fang J Z, Xu X X, Liu Z, Zhu X M and Xu W C 2012 Photochem. Photobiol. 88 1205
[12] Sakar M, Balakumar S, Saravanan P and Bharathkumar S 2015 Nanoscale 7 10667
[13] Zhang N, Chen D, Niu F, Wang S, Qin L S and Huang Y X 2016 Sci. Rep. 6 26467
[14] Pattanayak S, Chaudhary R N P and Das P R 2014 Mater. Lett. 10 165
[15] Sharma J, Bhat B H, Kumar A, Kumar S, Kaur T, Want B and Srivastava A K 2017 Materials Research Express 4 036104
[16] Yuan G L, Or S W, Chan H L W and Liu Z G 2007 J. Appl. Phys. 101 024106
[17] Yuan G L, Or S W and Chan H L W 2007 J. Phys. D 40 1196
[18] Wang J, Neaton J B, Zheng H, Nagarajan V, Ogale S B, Liu B, Viehland D, Vaithyanathan V, Schlom D G, Waghmare U V, Spaldin N A, Rabe K M, Wuttig M and Ramesh R 2003 Science 299 1719
[19] Singh S K, Ishiwara H and Maruyama K 2006 Appl. Phys. Lett. 88 262908
[20] Hermet P, Goffinet M, Kreisel J and Ghosez Ph 2007 Phys. Rev. B 75 220102
[21] Chen P, Xu X, Koenigsmann C, Santulli A C, Wong S S and Musfeldt J L 2010 Nano Lett. 10 4526
[22] Porporati A A, Tsuji K, Valant M, Axelsson A K and Pezzotti G 2010 J. Raman Spect. 41 84
[23] Bielecki J, Svedlindh P, Tibebu D T, Cai S, Eriksson S G, Borjesson L and Knee C S 2012 Phy. Rev. B 86 184422
[24] Suo L, Fang Z and Chen L 2016 Chin. Phys. B 25 016101
[25] Zhang J, Zhang D M, Zhang Q L and Yin S T 2016 Chin. Phys. B 25 037802
[26] Cao Y N, Wang G S, Tan T, Cai T D, Liu K, Wang L, Zhu G D and Mei J X 2016 Chin. Phys. B 25 107403
[27] Wang C, Wu H L, Song Y F, He X, Yang Y Q and Tan D W 2016 Chin. Phys. B 25 114210
[28] Zhou H, Gu Q, Liu B, Zhu L, Zhang L, Zhang F, Xu X, Wang Z, Sun X, Zhao X and Zhang Q 2015 Acta Phys. Sin. 64 098101(in Chinese)
[29] Zhang S 2006 Physics 35 103
[30] Porporati A A, Tsuji K, Valant M, Axelsson A K and Pezzottia G J 2010 Raman Spectrosc. 41 84
[31] Yang Y, Chen Y, Liu Y, Rui Y, Cao F, Yang A, Zu C and Yang Z 2016 Acta Phys. Sin. 65 127801(in Chinese)
[32] Yan F D, Da W H, Yong S W, Hai T X and Zhe G 2016 Acta Phys. Sin. 65 128101(in Chinese)
[33] Gui Q Y, Zhao N and Qiang Y 2007 Chin. Phys. Lett. 24 3532
[34] Yue W, Yuan W, Jian L, Hong W and Xiong H 2008 Chin. Phys. Lett. 25 3693
[35] Mei G, Feng Z, Jing L and Hui S 2009 Chin. Phys. Lett. 26 088105
[36] Hlinka J, Pokorny J, Karimi S and Reaney I M 2011 Phys. Rev. B 83 020101
[37] Ramirez M O, Krishnamurthi M, Denev S, Kumar A, Yang S Y, Chu Y H, Saiz E, Seidel J, Pyatakov A P, Bush A, Viehland D, Orenstein J, Ramesh R and Gopalan V 2008 Appl. Phys. Lett. 92 022511
[38] Tauc J 1974 Amorphous and Liquid Semiconductors (New York:Plenum Press)
[39] Liu Y, Zuo R and Qi S 2013 J. Mol. Catal. A:Chem. 376 1
[40] Mohan S, Subramanian B and Sarveswaran G 2014 J. Mater. Chem. C 2 6835
[41] Cheng W, Li F, Shu Z, Yue Y, Ding Z and Xiu S 2011 Chin. Phys. Lett. 28 110701
[42] Yue W, Yuan W, Jian L, Hong W and Xiong H 2008 Chin. Phys. Lett. 25 3693
[43] Mei G, Feng Z, Jing L and Hui S 2009 Chin. Phys. Lett. 26 088105
[44] Min C and An J 2011 Chin. Phys. Lett. 28 077701
[45] Rosnan R M, Othaman Z, Hussin R, Ati A A, Samavati A, Dabagh S and Zare S 2016 Chin. Phys. B 25 047501
[46] Pisarev R V, Moskvin A S, Kalashnikov A M and Rasing Th 2009 Phys. Rev. B 79 235128
[47] Xu X S, Brinzari T V, Lee S, Chu Y H, Martin L W, Kumar A, McGill S, Rai R C, Ramesh R, Gopalan V, Cheong S W and Musfeldt J L 2009 Phy. Rev. B 79 134425
[48] Chen P, Podraza N J, Xu X S, Melville A, Vlahos E, Gopalan V, Ramesh R, Schlom D G and Musfeldt J L 2010 Appl. Phys. Lett. 96 131907
[49] Chen P, Xu X, Koenigsmann C, Santulli A C, Wong S S and Musfeldt J L 2010 Nano Lett. 10 4526
[50] Yao Y, Li G H, Ciston S, Lueptow R M and Gray K A 2008 Environ. Sci. Technol. 42 4952
[51] Zhang N, Chen D, Niu F, Wang S, Qin L and Huang Y 2016 Sci. Rep. 6 26467
[52] Chaturvedi S, Das R, Poddar P and Kulkarni S 2015 RSC Adv. 5 23563
[53] Lei Y, Zhang L D, Meng G W, Li G H, Zhang X Y, Liang C H, Chen W and Wang S X 2001 Appl. Phys. Lett. 78 1125
[54] Suisalu A, Aarik J, Mändar H and Sildos I 1998 Thin Solid Films 336 295
[1] Effect of different catalysts and growth temperature on the photoluminescence properties of zinc silicate nanostructures grown via vapor-liquid-solid method
Ghfoor Muhammad, Imran Murtaza, Rehan Abid, and Naeem Ahmad. Chin. Phys. B, 2022, 31(5): 057801.
[2] Nanosheet-structured B4C with high hardness up to 42 GPa
Chang-Chun Wang(王常春), Le-Le Song(宋乐乐). Chin. Phys. B, 2019, 28(6): 066201.
[3] Effects of helium implantation on mechanical properties of (Al0.31Cr0.20Fe0.14Ni0.35)O high entropy oxide films
Zhao-Ming Yang(杨朝明), Kun Zhang(张坤), Nan Qiu(裘南), Hai-Bin Zhang(张海斌), Yuan Wang(汪渊), Jian Chen(陈坚). Chin. Phys. B, 2019, 28(4): 046201.
[4] Silicon quantum dots delivered phthalocyanine for fluorescence guided photodynamic therapy of tumor
Jiao-Jiao Liu(刘娇娇), Qi Chang(常琪), Mei-Mei Bao(鲍美美), Bing Yuan(元冰), Kai Yang(杨恺), Yu-Qiang Ma(马余强). Chin. Phys. B, 2017, 26(9): 098102.
[5] Dynamic characteristics of nanoindentation in Ni: A molecular dynamics simulation study
Muhammad Imran, Fayyaz Hussain, Muhammad Rashid, S. A. Ahmad. Chin. Phys. B, 2012, 21(11): 116201.
No Suggested Reading articles found!