|
|
Spurious symmetry-broken phase in a bidirectional two-lane ASEP with narrow entrances |
Bo Tian(田波)1, Rui Jiang(姜锐)2, Mao-Bin Hu(胡茂彬)1, Bin Jia(贾斌)2 |
1 School of Engineering Science, University of Science and Technology of China, Hefei 230026, China;
2 School of Traffic and Transportation, Beijing Jiaotong University, Beijing 100044, China |
|
|
Abstract As one of the paradigmatic models of non-equilibrium systems, the asymmetric simple exclusion process (ASEP) has been widely used to study many physical, chemical, and biological systems. The ASEP shows a range of nontrivial macroscopic phenomena, among which, the spontaneous symmetry breaking has gained a great deal of attention. Nevertheless, as a basic problem, it has been controversial whether there exist one or two symmetry-broken phases in the ASEP. Based on the mean field analysis and current minimization principle, this paper demonstrates that one of the broken-symmetry phases does not exist in a bidirectional two-lane ASEP with narrow entrances. Moreover, an exponential decay feature is observed, which has been used to predict the phase boundary in the thermodynamic limit. Our findings might be generalized to other ASEP models and thus deepen the understanding of the spontaneous symmetry breaking in non-equilibrium systems.
|
Received: 19 September 2016
Revised: 23 November 2016
Accepted manuscript online:
|
PACS:
|
05.70.Ln
|
(Nonequilibrium and irreversible thermodynamics)
|
|
02.50.Ey
|
(Stochastic processes)
|
|
05.60.Cd
|
(Classical transport)
|
|
Fund: Project supported by the National Basic Research Program of China (Grant No. 2012CB725404) and the National Natural Science Foundation of China (Grant Nos. 11422221 and 11672289). |
Corresponding Authors:
Rui Jiang, Mao-Bin Hu
E-mail: jiangrui@bjtu.edu.cn;humaobin@ustc.edu.cn
|
Cite this article:
Bo Tian(田波), Rui Jiang(姜锐), Mao-Bin Hu(胡茂彬), Bin Jia(贾斌) Spurious symmetry-broken phase in a bidirectional two-lane ASEP with narrow entrances 2017 Chin. Phys. B 26 020503
|
[1] |
Schmittmann B and Zia R K P 1998 Phys. Rep. 301 45
|
[2] |
Derrida B 1998 Phys. Rep. 301 65
|
[3] |
Schütz G M 2000 "Exactly solvable models for many-body systems far from equilibrium", in Phase Transitions and Critical Phenomena, Vol. 19, eds. by Domb C and Lebowitz J (London: Academic Press, UK)
|
[4] |
Blythe R A and Evans MR 2007 J. Phys. A: Math. Theor. 40 R333
|
[5] |
Chou T, Mallick K and Zia R K P 2011 Rep. Prog. Phys. 74 116601
|
[6] |
MacDonald C T, Gibbs J H and Pipkin A C 1968 Biopolymers 6 1
|
[7] |
Widom B, Viovy J L and Defontaines A D 1991 J. Phys. I France 1 1759
|
[8] |
Shaw L B, Zia R K P and Lee KH 2003 Phys. Rev. E 68 021910
|
[9] |
Shaw L B, Kolomeisky A B and Lee K H 2004 J. Phys. A: Math. Gen. 37 2105
|
[10] |
Chou T and Lakatos G 2004 Phys. Rev. Lett. 93 198101
|
[11] |
Parmeggiani A Franosch T and Frey E 2003 Phys. Rev. Lett. 90 086601
|
[12] |
Parmeggiani A Franosch T and Frey E 2004 Phys. Rev. E 70 046101
|
[13] |
Neri I, Kern N and Parmeggiani A 2013 Phys. Rev. Lett. 110 098102
|
[14] |
Teimouri H, Kolomeisky A B and Mehrabiani K 2015 J. Phys. A: Math. Theor. 48 065001
|
[15] |
Pinkoviezky I and Gov N S 2013 New J. Phys. 15 025009
|
[16] |
Dierl M, Maass P and Einax M 2012 Phys. Rev. Lett. 108 060603
|
[17] |
Schütz G 1999 Europhys. Lett. 48 623
|
[18] |
Chou T 1998 Phys. Rev. Lett. 80 85
|
[19] |
Meakin P, Ramanlal P, Sander L M and Ball R C 1986 Phys. Rev. A 34 5091
|
[20] |
Kim J M and Kosterlitz J M 1989 Phys. Rev. Lett. 62 2289
|
[21] |
Ritort F and Sollich P 2003 Adv. Phys. 52 219
|
[22] |
Hao Q Y, Jiang R, Hu M B, Jia B and Wang W X 2016 Sci. Rep. 6 19652
|
[23] |
Chowdhury D Santen L and Schadschneider A 2000 Phys. Rep. 329 199
|
[24] |
Schreckenberg M, Schadschneider A, Nagel K and Ito N 1995 Phys. Rev. E 51 2939
|
[25] |
Xiao S, Cai J J and Liu F 2009 Chin. Phys. B. 18 4613
|
[26] |
Xiao S, Cai J J, Liu F and Liu M Z 2010 Chin. Phys. B 19 090202
|
[27] |
Liu M Z, Li S D and Wang R L 2012 Chin. Phys. B 21 090510
|
[28] |
Liu M Z, Tuo X G Li Z, Yang J B and Gao Y 2012 Comput. Phys. Commun. 183 316
|
[29] |
Yang Z Y, Yang W L, Cui S, et al. 2015 Chin. Phys. Lett. 32 50503
|
[30] |
Evans M R, Foster D P, Godreche C and Mukamel D 1995 Phys. Rev. Lett. 74 208
|
[31] |
Evans M R, Foster D P, Godreche C and Mukamel D 1995 J. Stat. Phys. 80 69
|
[32] |
Erickson D W, Pruessner G, Schmittmann B and Zia R 2005 J. Phys. A: Math. Gen. 38 L659
|
[33] |
Pronina E and Kolomeisky A B 2007 J. Phys. A: Math. Gen. 40 2275
|
[34] |
Yuan Y M, Jiang R, Wang R, Wu Q S and Zhang J Q 2008 J. Phys. A: Math. Theor. 41 035003
|
[35] |
Zhu K X, Wang N, Hao Q Y, Liu Y Q and Jiang R 2012 Phys. Rev. E 85 041132
|
[36] |
Gupta S, Mukamel D and Schütz G M 2009 J. Phys. A: Math. Theor. 42 485002
|
[37] |
Popkov V and Schütz G M 2004 J. Stat. Mech. P12004
|
[38] |
Popkov V, Evans M R, and Mukamel D 2008 J. Phys. A: Math. Theor. 41 432002
|
[39] |
Willmann R D, Schütz G M and Grosskinsky S 2005 Europhys. Lett. 71 542
|
[40] |
Sun Z H, Jiang R, Hu M B and Wu Q S 2010 Phys. Lett. A 374 4080
|
[41] |
Wang R, Kolomeisky A B and Liu M 2011 Phys. Lett. A 375 318
|
[42] |
Arndt P F, Heinzel T and Rittenberg V 1998 J. Stat. Phys. 90 783
|
[43] |
Krug J 1991 Phys. Rev. Lett. 67 1882
|
[44] |
Popkov V and Schütz GM 1999 Europhys. Lett. 48 257
|
[45] |
Kolomeisky A B, Schütz G M, Kolomeisky E B and Straley J P 1998 J. Phys. A: Math. Gen. 31 6911
|
[46] |
Wang Y Q, Jiang R, Kolomeisky A B and Hu M B 2014 Sci. Rep. 4 5459
|
[47] |
Evans M, Kafri Y, Koduvely H and Mukamel D 1998 Phys. Rev. Lett. 80 425
|
[48] |
Kafri Y, Levine E, Mukamel D, Schütz G and Török J 2002 Phys. Rev. Lett. 89 035702
|
[49] |
Rajewsky N, Sasamoto T and Speer E 2000 Physica A 279 123
|
[50] |
Jiang R, Nishinari K, Hu M B, Wu Y H and Wu Q S 2009 J. Stat. Phys. 136 73
|
[51] |
Concannon R J and Blythe R A 2014 Phys. Rev. Lett. 112 050603
|
[52] |
Jiang R Hu M B, Wu Y H and Wu Q S 2008 Phys. Rev. E 77 041128
|
[53] |
Jiang R, Huang W, Hu M B, Yuan Y M and Wu Q S 2011 Phys. Rev. Lett. 106 079601
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|