|
|
An acoustic bending waveguide designed by anisotropic density-near-zero metamaterial |
Yang-Yang Wang(王洋洋)1, Er-Liang Ding(丁二亮)1, Xiao-Zhou Liu(刘晓宙)1,2, Xiu-Fen Gong(龚秀芬)1 |
1. Key Laboratory of Modern Acoustics, Institute of Acoustics, Nanjing University, Nanjing 210093, China;
2. State Key Laboratory of Acoustics, Institute of Acoustics, Chinese Academy of Sciences, Beijing 100190, China |
|
|
Abstract Anisotropic metamaterial with only one component of the mass density tensor near zero (ADNZ) is proposed to control the sound wave propagation. We find that such an anisotropic metamaterial can be used to realize perfect bending waveguides. According to a coordinate transformation, the surface waves on the input and output interfaces of the ADNZ metamaterial induces the sound energy flow to be redistributed and match smoothly with the propagating modes inside the metamaterial waveguide. According to the theory of bending waveguide, we realize the“T”-type sound shunting and convergence, as well as acoustic channel selection by embedding small-sized defects. Numerical calculations are performed to confirm the above effects.
|
Received: 08 March 2016
Revised: 24 May 2016
Accepted manuscript online:
|
PACS:
|
43.20.+g
|
(General linear acoustics)
|
|
43.35.+d
|
(Ultrasonics, quantum acoustics, and physical effects of sound)
|
|
46.40.-f
|
(Vibrations and mechanical waves)
|
|
Fund: Project supported by the National Basic Research Program of China (Grant No. 2012CB921504), the National Natural Science Foundation of China (Grant No. 11474160), the Fundamental Research Funds for the Central Universities, China (Grant No. 020414380001), the State Key Laboratory of Acoustics, Chinese Academy of Sciences (Grant No. SKLA201609), and the Priority Academic Program Development of Jiangsu Higher Education Institution, China. |
Corresponding Authors:
Xiao-Zhou Liu
E-mail: xzliu@nju.edu.cn
|
Cite this article:
Yang-Yang Wang(王洋洋), Er-Liang Ding(丁二亮), Xiao-Zhou Liu(刘晓宙), Xiu-Fen Gong(龚秀芬) An acoustic bending waveguide designed by anisotropic density-near-zero metamaterial 2016 Chin. Phys. B 25 124305
|
[1] |
Zhang S, Yin L and Fang N 2009 Phys. Rev. Lett. 102 194301
|
[2] |
Lee S H, Park C M, Seo Y M and Kim C K 2010 Phys. Rev. B 81 241102
|
[3] |
Chen H and Chan C T 2007 Appl. Phys. Lett. 91 183518
|
[4] |
Cheng Y, Yang F, Xu J Y and Liu X J 2008 Appl. Phys. Lett. 92 151913
|
[5] |
Cummer S A, Rahm M and Schurig D 2008 New J. Phys. 10 115025
|
[6] |
Farhat M, Guenneau S and Enoch S 2009 Phys. Rev. Lett. 103 024301
|
[7] |
Zhang S, Xia C and Fang N 2011 Phys. Rev. Lett. 106 024301
|
[8] |
Zhu X F, Liang B, Kan W and Cheng J C 2011 Phys. Rev. Lett. 106 014301
|
[9] |
Zhu X F, Ramezani H, Shi C Z, Zhu J and Zhang X 2014 Phys. Rev. X 4 031042
|
[10] |
Zhu X F 2013 Phys. Lett. A 377 1784
|
[11] |
Dai D D and Zhu X F 2013 Europhys. Lett. 102 14001
|
[12] |
Zhao D G, Li Y and Zhu X F 2015 Sci. Rep. 5 9376
|
[13] |
Wei Q, Cheng Y and Liu X J 2013 Appl. Phys. Lett. 102 174104
|
[14] |
Gu Z M, Liang B, Zou X Y, Yang J, Li Y, Yang J and Cheng J C 2015 Appl. Phys. Lett. 107 213503
|
[15] |
Li J and Chan C T 2004 Phys. Rev. E 70 055602
|
[16] |
Ding Y, Liu Z, Qiu C and Shi J 2007 Phys. Rev. Lett. 99 093904
|
[17] |
Lee S H, Park C M, Seo Y M, Wang Z G and Kim C K 2010 Phys. Rev. Lett. 104 054301
|
[18] |
Zhou X and Hu G 2011 Appl. Phys. Lett. 98 263510
|
[19] |
Liu F, Huang X and Chan C T 2012 Appl. Phys. Lett. 100 071911
|
[20] |
Bongard F, Lissek H and Mosig J R 2010 Phys. Rev. B 82 094306
|
[21] |
Jing Y, Xu J and Fang N X 2012 Phys. Lett. A 376 2834
|
[22] |
Park J J, Lee K J B, Wright O B, Jung M K and Lee S H 2013 Phys. Rev. Lett. 110 244302
|
[23] |
Fleury R and Alu A 2013 Phys. Rev. Lett. 111 055501
|
[24] |
Shen C, Xu J, Fang N X and Jing Y 2014 Phys. Rev. X 4 041033
|
[25] |
Xu X, Li P, Zhou X and Hu G 2015 Europhys. Lett. 109 28001
|
[26] |
Ding E L, Wang Y Y, Liu X Z and Gong X F 2015 AIP Adv. 5 107222
|
[27] |
Cheng Q, Cai B G, Jiang W X, Ma H F and Cui T J 2012 Appl. Phys. Lett. 101 141902
|
[28] |
Cheng Q, Jiang W X and Cui T J 2012 Phys. Rev. Lett. 108 213903
|
[29] |
Liu F, Cai F, Peng S, Hao R, Ke M and Liu Z 2009 Phys. Rev. E 80 026603
|
[30] |
Fleury R and Alú A 2013 Phys. Rev. Lett. 111 055501
|
[31] |
Wu L Y and Chen L W 2011 J. Appl. Phys. 110 114507
|
[32] |
Li X and Liu Z 2005 Phys. Lett. A 338 413
|
[33] |
Jiang X, Liang B, Zou X Y, Yin L L and Cheng J C 2014 Appl. Phys. Lett. 104 083510
|
[34] |
Liang Z and Li J 2011 Opt. Express 19 16821
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|