Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(11): 117203    DOI: 10.1088/1674-1056/25/11/117203
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Spin noise spectroscopy of rubidium atomic gas under resonant and non-resonant conditions

Jian Ma(马健)1, Ping Shi(史平)1, Xuan Qian(钱轩)1, Wei Li(李伟)2, Yang Ji(姬扬)1
1 SKLSM, Institute of Semiconductors, Chinese Academy of Science, Beijing 100083, China;
2 Faculty of Maritime Technology and Operations, Norwegian University of Science and Technology, Aalesund 6025, Norway
Abstract  The spin fluctuation in rubidium atom gas is studied via all-optical spin noise spectroscopy (SNS). Experimental results show that the integrated SNS signal and its full width at half maximum (FWHM) strongly depend on the frequency detuning of the probe light under resonant and non-resonant conditions. The total integrated SNS signal can be well fitted with a single squared Faraday rotation spectrum and the FWHM dependence may be related to the absorption profile of the sample.
Keywords:  spin noise spectroscopy      rubidium atoms      homogeneous broaden  
Received:  07 July 2016      Revised:  11 August 2016      Accepted manuscript online: 
PACS:  72.25.Rb (Spin relaxation and scattering)  
  42.50.Lc (Quantum fluctuations, quantum noise, and quantum jumps)  
  32.30.-r (Atomic spectra?)  
  42.25.Bs (Wave propagation, transmission and absorption)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 91321310 and 11404325) and the National Basic Research Program of China (Grant No. 2013CB922304).
Corresponding Authors:  Yang Ji     E-mail:  jiyang@semi.ac.cn

Cite this article: 

Jian Ma(马健), Ping Shi(史平), Xuan Qian(钱轩), Wei Li(李伟), Yang Ji(姬扬) Spin noise spectroscopy of rubidium atomic gas under resonant and non-resonant conditions 2016 Chin. Phys. B 25 117203

[1] Müller G M, Oestreich M, Römer M and Hübner J 2010 Physica E 43 569
[2] Dyakonov M I 2008 Spin Physics in Semiconductors (Berlin:Springer-Verlag) p. 129
[3] Crooker S A, Rickel D G, Balatsky A V and Smith D L 2004 Nature 431 49
[4] Oestreich M, Römer M, Haug R J and Hägele D 2005 Phys. Rev. Lett. 95 216603
[5] Crooker S A, Brandt J, Sandfort C, Greilich A, Yakovlev D R, Reuter D, Wieck A D and Bayer M 2010 Phys. Rev. Lett. 104 036601
[6] Dahbashi R, Hübner J, Berski F, Wiegand J, Marie X, Pierz K, Schumacher H W and Oestreich M 2012 Appl. Phys. Lett. 100 031906
[7] Li Y, Sinitsyn N, Smith D L, Reuter D, Wieck A D, Yakovlev D R, Bayer M and Crooker S A 2012 Phys. Rev. Lett. 108 186603
[8] Dahbashi R, Hübner J, Berski F, Pierz K and Oestreich M 2014 Phys. Rev. Lett. 112 156601
[9] Ryzhov I I, Poltavtsev S V, Kavokin K V, Glazov M M, Kozlov G G, Vladimirova M, Scalbert D, Cronenberger S, Kavokin A, V, Lemaitre A, Bloch J and Zapasskii V S 2015 Appl. Phys. Lett. 106 242405
[10] Berski F, Hübner J, Oestreich M, Ludwig A, Wieck A D and Glazov M M 2015 Phys. Rev. Lett. 115 176601
[11] Roy D, Yang L, Crooker S A and Sinitsy N A 2015 Scientific Reports 5 9573
[12] Li F, Saxena A, Smith D and Sinitsyn N A 2013 New J. Phys. 15 113038
[13] Li F and Sinitsyn N A 2016 Phys. Rev. Lett. 116 026601
[14] Horn H, Müller G M, Rasel E M, Santos L, Hübner J and Oestreich M 2011 Phys. Rev. A 84 043851
[15] Zapasskii V S, Greilich A, Crooker S A, Li Y, Kozlov G G, Yakovlev D R, Reuter D, Wieck A D and Bayer M 2013 Phys. Rev. Lett. 110 176601
[16] The DAC is designed and made by ourselves similar to that used by Crooker et al. (Ref.
[5])
[17] Franz F A and Volk C 1976 Phys. Rev. A 14 1711
[18] Lucivero V G, Jiménez-Martínez R, Kong J and Mitchell M W 2016 Phys. Rev. A 93 053802
[19] Seltzer S J 2008 Developments in Alkali-metal Atomic Magnetometry (Ph. D. Dissertation) (Princeton:Princeton University).
[20] He L X and Wang Y Z 2004 Chin. Phys. B 13 754
[1] Effects of phosphorus doping on the physical properties of axion insulator candidate EuIn2As2
Feihao Pan(潘斐豪), Congkuan Tian(田丛宽), Jiale Huang(黄嘉乐), Daye Xu(徐大业), Jinchen Wang (汪晋辰), Peng Cheng(程鹏), Juanjuan Liu(刘娟娟), and Hongxia Zhang(张红霞). Chin. Phys. B, 2022, 31(5): 057502.
[2] Magnetization-direction-dependent inverse spin Hall effect observed in IrMn/NiFe/Cu/YIG multilayer structure
Runrun Hao(郝润润), Ruxue Zang(臧如雪), Tie Zhou(周铁), Shishou Kang(康仕寿), Shishen Yan(颜世申), Guolei Liu(刘国磊), Guangbing Han(韩广兵), Shuyun Yu(于淑云), Liangmo Mei(梅良模). Chin. Phys. B, 2019, 28(3): 037202.
[3] Spin depolarization dynamics of WSe2 bilayer
Binghui Niu(牛秉慧), Jialiang Ye(叶加良), Ting Li(李婷), Ying Li(李莹), Xinhui Zhang(张新惠). Chin. Phys. B, 2018, 27(5): 057202.
[4] Spin-independent transparency of pure spin current at normal/ferromagnetic metal interface
Runrun Hao(郝润润), Hai Zhong(钟海), Yun Kang(康韵), Yufei Tian(田雨霏), Shishen Yan(颜世申), Guolei Liu(刘国磊), Guangbing Han(韩广兵), Shuyun Yu(于淑云), Liangmo Mei(梅良模), Shishou Kang(康仕寿). Chin. Phys. B, 2018, 27(3): 037202.
[5] Direct spin-phonon coupling of spin-flip relaxation in quantum dots
Ji-Wen Yin(尹辑文), Wei-Ping Li(李伟萍), Hong-Juan Li(李红娟), Yi-Fu Yu(于毅夫). Chin. Phys. B, 2017, 26(1): 017201.
[6] Theory of phonon-modulated electron spin relaxation time based on the projection–reduction method
Nam Lyong Kang, Sang Don Choi. Chin. Phys. B, 2014, 23(8): 087102.
[7] Large magnetoresistance in metamagnetic CoMnSi0.88Ge0.12 alloy
Zhang Cheng-Liang(张成亮), Wang Dun-Hui(王敦辉), Cao Qing-Qi(曹庆琪), Xuan Hai-Cheng(轩海成), Ma Sheng-Can(马胜灿), and Du You-Wei(都有为). Chin. Phys. B, 2010, 19(3): 037501.
No Suggested Reading articles found!