CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Spin depolarization dynamics of WSe2 bilayer |
Binghui Niu(牛秉慧)1,2, Jialiang Ye(叶加良)1,2, Ting Li(李婷)1,2, Ying Li(李莹)1,2, Xinhui Zhang(张新惠)1,2 |
1 State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China; 2 College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China |
|
|
Abstract In this work, the spin dynamics of a centrosymmetric WSe2 bilayer has been investigated by the two-color time-resolved Kerr rotation together with helicity-resolved transient reflectance techniques. Two depolarization processes associated with the direct transition are discovered at a low temperature of 10 K, with the characteristic decaying time of ~3.8 ps and ~20 ps, respectively. The short decay time of ~3.8 ps is suggested to be the exciton spin lifetime of the WSe2 bilayer, which is limited by the short exciton lifetime of the WSe2 bilayer and the rapid intervalley electron-hole exchange interaction between K+ and K- valley in the same layer as that of monolayer. The long decay time of ~20 ps is suggested to be the spin lifetime of photo-excited electrons, whose spin relaxation is governed by the rapid intervalley scattering from the K valley to the global minimum Σ valley and the subsequent interlayer charge transfer in WSe2 bilayer. Our experimental results prove the existence of the spin-polarized excitons and carriers even in centrosymmetric transition metal dichalcogenides (TMDCs) bilayers, suggesting their potential valleytronic and spintronic device applications.
|
Received: 15 January 2018
Revised: 14 February 2018
Accepted manuscript online:
|
PACS:
|
72.25.Rb
|
(Spin relaxation and scattering)
|
|
31.70.Hq
|
(Time-dependent phenomena: excitation and relaxation processes, and reaction rates)
|
|
78.55.-m
|
(Photoluminescence, properties and materials)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No.11474276) and the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No.XDPB0603). |
Corresponding Authors:
Xinhui Zhang
E-mail: xinhuiz@semi.ac.cn
|
Cite this article:
Binghui Niu(牛秉慧), Jialiang Ye(叶加良), Ting Li(李婷), Ying Li(李莹), Xinhui Zhang(张新惠) Spin depolarization dynamics of WSe2 bilayer 2018 Chin. Phys. B 27 057202
|
[1] |
Schaibley J R, Yu H, Clark G, Rivera P, Ross J S, Seyler K L, Yao W and Xu X 2016 Nat. Rev. Mater. 1 16055
|
[2] |
Liu G B, Xiao D, Yao Y, Xu X and Yao W 2015 Chem. Soc. Rev. 44 2643
|
[3] |
Song X, Xie S, Kang K, Park J and Sih V 2016 Nano Lett. 16 5010
|
[4] |
Maciej K, Maciej R M, Ashish A, Karol N, Artur O S, Clement F and Marek P 2017 Nanophotonics 6 1289
|
[5] |
Zhao W, Ghorannevis Z, Chu L, Toh M, Kloc C, Tan P H and Eda G 2013 ACS Nano 7 791
|
[6] |
Jones A M, Yu H, Ghimire N J, Wu S, Aivazian G, Ross J S, Zhao B, Yan J, Mandrus D G, Xiao D, Yao W and Xu X 2013 Nat. Nanotech. 8 634
|
[7] |
Zhu C R, Zhang K, Glazov M, Urbaszek B, Amand T, Ji Z W, Liu B L and Marie X 2014 Phys. Rev. B 90 161302
|
[8] |
Cui Q, Ceballos F, Kumar N and Zhao H 2014 ACS Nano 8 2970
|
[9] |
Wang G, Bouet L, Lagarde D, Vidal M, Balocchi A, Amand T, Marie X and Urbaszek B 2014 Phys. Rev. B 90 075413
|
[10] |
Courtade E, Semina M, Manca M, Glazov M M, Robert C, Cadiz F, Wang G, Taniguchi T, Watanabe K, Pierre M, Escoffier W, Ivchenko E L, Renucci P, Marie X, Amand T and Urbaszek B 2017 Phys. Rev. B 96 085302
|
[11] |
Hsu W T, Chen Y L, Chen C H, Liu P S, Hou T H, Li L J and Chang W H 2015 Nat. Commun. 6 8963
|
[12] |
Tonndorf P, Schmidt R, Böttger P, Zhang X, Börner J, Liebig A, Albrecht M, Kloc C, Gordan O, Zahn D R T, Michaelis de Vasconcellos S and Bratschitsch R 2013 Opt. Express 21 4908
|
[13] |
Yao W, Xiao D and Niu Q 2008 Phys. Rev. B 77 235406
|
[14] |
Xiao D, Liu G B, Feng W, Xu X and Yao W 2012 Phys. Rev. Lett. 108 196802
|
[15] |
Mak K F, He K, Shan J and Heinz T F 2012 Nat. Nanotech. 7 494
|
[16] |
Xu X, Yao W, Xiao D and Heinz T F 2014 Nat. Phys. 10 343
|
[17] |
Shi H, Yan R, Bertolazzi S, Brivio J, Gao B, Kis A, Jena D, Xing H G and Huang L 2013 ACS Nano 7 1072
|
[18] |
Mai C, Barrette A, Yu Y, Semenov Y G, Kim K W, Cao L and Gundogdu K 2014 Nano Lett. 14 202
|
[19] |
Wang Q, Ge S, Li X, Qiu J, Ji Y, Feng J and Sun D 2013 ACS Nano 7 11087
|
[20] |
Lagarde D, Bouet L, Marie X, Zhu C R, Liu B L, Amand T, Tan P H and Urbaszek B 2014 Phys. Rev. Lett. 112 047401
|
[21] |
Yu T and Wu M W 2014 Phys. Rev. B 89 205303
|
[22] |
Yan T, Qiao X, Tan P and Zhang X 2015 Sci. Rep. 5 15625
|
[23] |
Glazov M M, Amand T, Marie X, Lagarde D, Bouet L and Urbaszek B 2014 Phys. Rev. B 89 201302
|
[24] |
Yan T, Ye J, Qiao X, Tan P and Zhang X 2017 Phys. Chem. Chem. Phys. 19 3176
|
[25] |
Yu T and Wu M W 2014 Phys. Rev. B 90 035437
|
[26] |
Wang G, Marie X, Bouet L, Vidal M, Balocchi A, Amand T, Lagarde D and Urbasek B 2014 Appl. Phys. Lett. 105 182105
|
[27] |
Arora A, Koperski M, Nogajewski K, Marcus J, Faugeras C and Potemski M 2015 Nanoscale 7 10421
|
[28] |
Hu S Y, Lee Y C, Shen J L, Chen K W and Huang Y S 2007 Phys. Status Solidi A 204 2389
|
[29] |
Jones A M, Yu H, Ross J S, Klement P, Ghimire N J, Yan J, Mandrus D G, Yao W and Xu X 2014 Nat. Phys. 10 130
|
[30] |
Zhu B, Zeng H, Dai J, Gong Z and Cui X 2014 Proc. Natl. Acad. Sci. USA 111 11606
|
[31] |
Wu S, Ross J S, Liu G B, Aivazian G, Jones A, Fei Z, Zhu W, Xiao D, Yao W, Cobden D and Xu X 2013 Nat. Phys. 9 149
|
[32] |
Riley J M, Mazzola F, Dendzik M, Michiardi M, Takayama T, Bawden L, Granerod C, Leandersson M, Balasubramanian T, Hoesch M, Kim T K, Takagi H, Meevasana W, Hofmann Ph, Bahramy M S, Wells J W and King P D C 2014 Nat. Phys. 10 835
|
[33] |
Liu Q, Zhang X and Zunger A 2015 Phys. Rev. Lett. 114 087402
|
[34] |
Bertoni R, Nicholson C W, Waldecker L, Hübener H, Monney C, De Giovannini U, Puppin M, Hoesch M, Springate E, Chapman R T, Cacho C, Wolf M, Rubio A and Ernstorfer R 2016 Phys. Rev. Lett. 117 277201
|
[35] |
Yang L, Sinitsyn N A, Chen W, Yuan J, Zhang J, Lou J and Crooker S A 2015 Nat. Phys. 11 830
|
[36] |
Plechinger G, Nagler P, Arora A, Schmidt R, Chernikov A, Del Águila A G, Christianen P C, Bratschitsch R, Schüller C and Korn T 2016 Nat. Commun. 7 12715
|
[37] |
Dey P, Yang L, Robert C, Wang G, Urbaszek B, Marie X and Crooker S A 2017 Phys. Rev. Lett. 119 137401
|
[38] |
Singh A, Tran K, Kolarczik M, Seifert J, Wang Y, Hao K, Pleskot D, Gabor N M, Helmrich S, Owschimikow N, Woggon U and Li X 2016 Phys. Rev. Lett. 117 257402
|
[39] |
Desai S B, Seol G, Kang J S, Fang H, Battaglia C, Kapadia R, Ager J W, Guo J and Javey A 2014 Nano Lett. 14 4592
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|