Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(5): 057202    DOI: 10.1088/1674-1056/27/5/057202
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Spin depolarization dynamics of WSe2 bilayer

Binghui Niu(牛秉慧)1,2, Jialiang Ye(叶加良)1,2, Ting Li(李婷)1,2, Ying Li(李莹)1,2, Xinhui Zhang(张新惠)1,2
1 State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China;
2 College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  In this work, the spin dynamics of a centrosymmetric WSe2 bilayer has been investigated by the two-color time-resolved Kerr rotation together with helicity-resolved transient reflectance techniques. Two depolarization processes associated with the direct transition are discovered at a low temperature of 10 K, with the characteristic decaying time of ~3.8 ps and ~20 ps, respectively. The short decay time of ~3.8 ps is suggested to be the exciton spin lifetime of the WSe2 bilayer, which is limited by the short exciton lifetime of the WSe2 bilayer and the rapid intervalley electron-hole exchange interaction between K+ and K- valley in the same layer as that of monolayer. The long decay time of ~20 ps is suggested to be the spin lifetime of photo-excited electrons, whose spin relaxation is governed by the rapid intervalley scattering from the K valley to the global minimum Σ valley and the subsequent interlayer charge transfer in WSe2 bilayer. Our experimental results prove the existence of the spin-polarized excitons and carriers even in centrosymmetric transition metal dichalcogenides (TMDCs) bilayers, suggesting their potential valleytronic and spintronic device applications.
Keywords:  spin depolarization dynamics      WSe2 bilayer      time-resolved Kerr rotation  
Received:  15 January 2018      Revised:  14 February 2018      Accepted manuscript online: 
PACS:  72.25.Rb (Spin relaxation and scattering)  
  31.70.Hq (Time-dependent phenomena: excitation and relaxation processes, and reaction rates)  
  78.55.-m (Photoluminescence, properties and materials)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No.11474276) and the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No.XDPB0603).
Corresponding Authors:  Xinhui Zhang     E-mail:  xinhuiz@semi.ac.cn

Cite this article: 

Binghui Niu(牛秉慧), Jialiang Ye(叶加良), Ting Li(李婷), Ying Li(李莹), Xinhui Zhang(张新惠) Spin depolarization dynamics of WSe2 bilayer 2018 Chin. Phys. B 27 057202

[1] Schaibley J R, Yu H, Clark G, Rivera P, Ross J S, Seyler K L, Yao W and Xu X 2016 Nat. Rev. Mater. 1 16055
[2] Liu G B, Xiao D, Yao Y, Xu X and Yao W 2015 Chem. Soc. Rev. 44 2643
[3] Song X, Xie S, Kang K, Park J and Sih V 2016 Nano Lett. 16 5010
[4] Maciej K, Maciej R M, Ashish A, Karol N, Artur O S, Clement F and Marek P 2017 Nanophotonics 6 1289
[5] Zhao W, Ghorannevis Z, Chu L, Toh M, Kloc C, Tan P H and Eda G 2013 ACS Nano 7 791
[6] Jones A M, Yu H, Ghimire N J, Wu S, Aivazian G, Ross J S, Zhao B, Yan J, Mandrus D G, Xiao D, Yao W and Xu X 2013 Nat. Nanotech. 8 634
[7] Zhu C R, Zhang K, Glazov M, Urbaszek B, Amand T, Ji Z W, Liu B L and Marie X 2014 Phys. Rev. B 90 161302
[8] Cui Q, Ceballos F, Kumar N and Zhao H 2014 ACS Nano 8 2970
[9] Wang G, Bouet L, Lagarde D, Vidal M, Balocchi A, Amand T, Marie X and Urbaszek B 2014 Phys. Rev. B 90 075413
[10] Courtade E, Semina M, Manca M, Glazov M M, Robert C, Cadiz F, Wang G, Taniguchi T, Watanabe K, Pierre M, Escoffier W, Ivchenko E L, Renucci P, Marie X, Amand T and Urbaszek B 2017 Phys. Rev. B 96 085302
[11] Hsu W T, Chen Y L, Chen C H, Liu P S, Hou T H, Li L J and Chang W H 2015 Nat. Commun. 6 8963
[12] Tonndorf P, Schmidt R, Böttger P, Zhang X, Börner J, Liebig A, Albrecht M, Kloc C, Gordan O, Zahn D R T, Michaelis de Vasconcellos S and Bratschitsch R 2013 Opt. Express 21 4908
[13] Yao W, Xiao D and Niu Q 2008 Phys. Rev. B 77 235406
[14] Xiao D, Liu G B, Feng W, Xu X and Yao W 2012 Phys. Rev. Lett. 108 196802
[15] Mak K F, He K, Shan J and Heinz T F 2012 Nat. Nanotech. 7 494
[16] Xu X, Yao W, Xiao D and Heinz T F 2014 Nat. Phys. 10 343
[17] Shi H, Yan R, Bertolazzi S, Brivio J, Gao B, Kis A, Jena D, Xing H G and Huang L 2013 ACS Nano 7 1072
[18] Mai C, Barrette A, Yu Y, Semenov Y G, Kim K W, Cao L and Gundogdu K 2014 Nano Lett. 14 202
[19] Wang Q, Ge S, Li X, Qiu J, Ji Y, Feng J and Sun D 2013 ACS Nano 7 11087
[20] Lagarde D, Bouet L, Marie X, Zhu C R, Liu B L, Amand T, Tan P H and Urbaszek B 2014 Phys. Rev. Lett. 112 047401
[21] Yu T and Wu M W 2014 Phys. Rev. B 89 205303
[22] Yan T, Qiao X, Tan P and Zhang X 2015 Sci. Rep. 5 15625
[23] Glazov M M, Amand T, Marie X, Lagarde D, Bouet L and Urbaszek B 2014 Phys. Rev. B 89 201302
[24] Yan T, Ye J, Qiao X, Tan P and Zhang X 2017 Phys. Chem. Chem. Phys. 19 3176
[25] Yu T and Wu M W 2014 Phys. Rev. B 90 035437
[26] Wang G, Marie X, Bouet L, Vidal M, Balocchi A, Amand T, Lagarde D and Urbasek B 2014 Appl. Phys. Lett. 105 182105
[27] Arora A, Koperski M, Nogajewski K, Marcus J, Faugeras C and Potemski M 2015 Nanoscale 7 10421
[28] Hu S Y, Lee Y C, Shen J L, Chen K W and Huang Y S 2007 Phys. Status Solidi A 204 2389
[29] Jones A M, Yu H, Ross J S, Klement P, Ghimire N J, Yan J, Mandrus D G, Yao W and Xu X 2014 Nat. Phys. 10 130
[30] Zhu B, Zeng H, Dai J, Gong Z and Cui X 2014 Proc. Natl. Acad. Sci. USA 111 11606
[31] Wu S, Ross J S, Liu G B, Aivazian G, Jones A, Fei Z, Zhu W, Xiao D, Yao W, Cobden D and Xu X 2013 Nat. Phys. 9 149
[32] Riley J M, Mazzola F, Dendzik M, Michiardi M, Takayama T, Bawden L, Granerod C, Leandersson M, Balasubramanian T, Hoesch M, Kim T K, Takagi H, Meevasana W, Hofmann Ph, Bahramy M S, Wells J W and King P D C 2014 Nat. Phys. 10 835
[33] Liu Q, Zhang X and Zunger A 2015 Phys. Rev. Lett. 114 087402
[34] Bertoni R, Nicholson C W, Waldecker L, Hübener H, Monney C, De Giovannini U, Puppin M, Hoesch M, Springate E, Chapman R T, Cacho C, Wolf M, Rubio A and Ernstorfer R 2016 Phys. Rev. Lett. 117 277201
[35] Yang L, Sinitsyn N A, Chen W, Yuan J, Zhang J, Lou J and Crooker S A 2015 Nat. Phys. 11 830
[36] Plechinger G, Nagler P, Arora A, Schmidt R, Chernikov A, Del Águila A G, Christianen P C, Bratschitsch R, Schüller C and Korn T 2016 Nat. Commun. 7 12715
[37] Dey P, Yang L, Robert C, Wang G, Urbaszek B, Marie X and Crooker S A 2017 Phys. Rev. Lett. 119 137401
[38] Singh A, Tran K, Kolarczik M, Seifert J, Wang Y, Hao K, Pleskot D, Gabor N M, Helmrich S, Owschimikow N, Woggon U and Li X 2016 Phys. Rev. Lett. 117 257402
[39] Desai S B, Seol G, Kang J S, Fang H, Battaglia C, Kapadia R, Ager J W, Guo J and Javey A 2014 Nano Lett. 14 4592
[1] Determining the sign of g factor via time-resolved Kerr rotation spectroscopy with a rotatable magnetic field
Gu Xiao-Fang(谷晓芳), Qian Xuan(钱轩), Ji Yang(姬扬), Chen Lin(陈林), and Zhao Jian-Hua(赵建华). Chin. Phys. B, 2011, 20(8): 087503.
No Suggested Reading articles found!