Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(10): 100501    DOI: 10.1088/1674-1056/25/10/100501
GENERAL Prev   Next  

Parameter allocation of parallel array bistable stochastic resonance and its application in communication systems

Jian Liu(刘健)1, You-Guo Wang(王友国)2,3, Qi-Qing Zhai(翟其清)1, Jin Liu(刘进)4
1 College of Communication and Information Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210003, China;
2 College of Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, China;
3 Jiangsu Innovative Coordination Center of Internet of Things, Nanjing University of Posts and Telecommunications, Nanjing 210003, China;
4 20th Research Institute of China Electronics Technology Corporation, Xi'an 710068, China
Abstract  In this paper, we propose a parameter allocation scheme in a parallel array bistable stochastic resonance-based communication system (P-BSR-CS) to improve the performance of weak binary pulse amplitude modulated (BPAM) signal transmissions. The optimal parameter allocation policy of the P-BSR-CS is provided to minimize the bit error rate (BER) and maximize the channel capacity (CC) under the adiabatic approximation condition. On this basis, we further derive the best parameter selection theorem in realistic communication scenarios via variable transformation. Specifically, the P-BSR structure design not only brings the robustness of parameter selection optimization, where the optimal parameter pair is not fixed but variable in quite a wide range, but also produces outstanding system performance. Theoretical analysis and simulation results indicate that in the P-BSR-CS the proposed parameter allocation scheme yields considerable performance improvement, particularly in very low signal-to-noise ratio (SNR) environments.
Keywords:  stochastic resonance      parameter allocation      bit error rate      channel capacity  
Received:  29 January 2016      Revised:  29 May 2016      Accepted manuscript online: 
PACS:  05.40.-a (Fluctuation phenomena, random processes, noise, and Brownian motion)  
  02.50.-r (Probability theory, stochastic processes, and statistics)  
  43.60.Dh (Signal processing for communications: telephony and telemetry, sound pickup and reproduction, multimedia)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61179027), the Qinglan Project of Jiangsu Province of China (Grant No. QL06212006), and the University Postgraduate Research and Innovation Project in Jiangsu Province (Grant Nos. KYLX15_0829, KYLX15_0831).
Corresponding Authors:  You-Guo Wang     E-mail:  wyg@njupt.edu.cn

Cite this article: 

Jian Liu(刘健), You-Guo Wang(王友国), Qi-Qing Zhai(翟其清), Jin Liu(刘进) Parameter allocation of parallel array bistable stochastic resonance and its application in communication systems 2016 Chin. Phys. B 25 100501

[1] Benzi R, Sutera A and Vulpiani A 1981 J. Phys.: Math. Gen. 14 453
[2] Wang Z Y, Chen P J and Zhang L Y 2015 Chin. Phys. B 24 059801
[3] Guo Y F and Tan J G 2012 Chin. Phys. B 21 120501
[4] Li J H 2014 Chin. Phys. Lett. 31 030502
[5] Uhlich S 2015 IEEE T. Signal Proces. 63 5535
[6] Liu J, Wang Y G and Zhai Q Q 2016 IEICE T. Fund. Electr. 99 323
[7] Kang Y M, Xue J X and Xie Y 2005 Phys. Rev. E 72 021902
[8] Duan F B, Chapeau-Blondeau F and Abbott D 2012 Signal Process. 92 3049
[9] Duan F B, Chapeau-Blondeau F and Abbott D 2011 Physica A 390 2855
[10] Duan F B, Chapeau-Blondeau F and Abbott D 2016 Phys. Lett. A 380 33
[11] McDonnell M D, Stocks N G, Pearce C E M and Abbott D 2008 Stochastic Resonance: From Suprathreshold Stochastic Resonance to Stochastic Signal Quantization (Cambridge: Cambridge University Press)
[12] Chen H, Varshney P K, May S K and Michels J H 2007 IEEE T. Signal Proces. 55 3172
[13] Guo G C, Yu X W, Jing Y D and Mandal M 2007 IEEE Signal Proc. Lett. 55 3172
[14] Li Q W and Li Z 2014 IEEE T. Veh. Technol. 63 1717
[15] Xu B H, Duan F B, Bao R H and Li J L 2002 Chaos Solitons and Fractals 13 633
[16] McNamara B and Wiesenfeld K 1989 Phys. Rev. A 39 4854
[17] Yang D X, Gu F S, Feng G J, Yang Y M and Andrew B 2015 Chin. Phys. B 24 110502
[18] Wang J, Zhang S W, Zhang D M, Li H S and Li S Q 2014 IEEE T. Wirel. Commun. 13 4014
[19] Liu J and Li Z 2015 IET Commun. 9 101
[20] Liu J, Li Z, Guan L and Pan L 2014 IEEE Commun. Lett. 18 427
[21] Stocks N G 2000 Phys. Rev. Lett. 84 2310
[22] Duan F B, Chapeau-Blondeau F and Abbott D 2006 Electron. Lett. 42 1008
[23] Duan F B, Chapeau-Blondeau F and Abbott D 2008 Phys. Lett. A 372 2159
[24] Kang Y M, Jiang J and Xie Y 2012 J. Stat. Mech.: Theory E. 10 P10029
[25] Yang J Q, Ma H and Zhong S C 2015 Acta Phys. Sin. 64 170501 (in Chinese)
[26] Qin T Q, Wang F, Yang B and Luo M K 2015 Acta Phys. Sin. 64 120501 (in Chinese)
[27] Tu Z, Lai L and Luo M K 2014 Acta Phys. Sin. 63 120503 (in Chinese)
[28] Lin M, Huang Y M and Fang L M 2008 Acta Phys. Sin. 57 2048 (in Chinese)
[29] Tang Y, Zou W, Lu J Q and Kurths J 2012 Phys. Rev. E 85 046207
[30] Rousseau D, Anand G V and Chapeau-Blondeau F 2006 Signal Process. 86 3456
[31] Hari V H, Anand G V, Premkumar A B and Madhukumar A S 2012 Signal Process. 92 1745
[32] Li H and Wang Y G 2014 Acta Phys. Sin. 63 120506 (in Chinese)
[33] Li W, Lu H Z and Zuo Y Y 2014 Math. Probl. Eng. 43 7843
[34] Ma Y M and Duan F B 2014 Phys. Lett. A 378 2651
[35] Zhang X M, Yan J F and Duan F B 2016 Fluct. Noise Lett. 15 1650003
[36] Duan F B and Xu B H 2003 Int. J. Bifurc. Chaos 13 411
[37] Kay S M 2008 Fundamentals of Statistical Signal Processing, Volume II: Detection Theory, 3rd edn. (Englewood Cliffs: Prentice-Hall)
[1] Inverse stochastic resonance in modular neural network with synaptic plasticity
Yong-Tao Yu(于永涛) and Xiao-Li Yang(杨晓丽). Chin. Phys. B, 2023, 32(3): 030201.
[2] Realizing reliable XOR logic operation via logical chaotic resonance in a triple-well potential system
Huamei Yang(杨华美) and Yuangen Yao(姚元根). Chin. Phys. B, 2023, 32(2): 020501.
[3] Inhibitory effect induced by fractional Gaussian noise in neuronal system
Zhi-Kun Li(李智坤) and Dong-Xi Li(李东喜). Chin. Phys. B, 2023, 32(1): 010203.
[4] Hyperparameter on-line learning of stochastic resonance based threshold networks
Weijin Li(李伟进), Yuhao Ren(任昱昊), and Fabing Duan(段法兵). Chin. Phys. B, 2022, 31(8): 080503.
[5] A sign-function receiving scheme for sine signals enhanced by stochastic resonance
Zhao-Rui Li(李召瑞), Bo-Hang Chen(陈博航), Hui-Xian Sun(孙慧贤), Guang-Kai Liu(刘广凯), and Shi-Lei Zhu(朱世磊). Chin. Phys. B, 2021, 30(8): 080502.
[6] Collective stochastic resonance behaviors of two coupled harmonic oscillators driven by dichotomous fluctuating frequency
Lei Jiang(姜磊), Li Lai(赖莉), Tao Yu(蔚涛), Maokang Luo(罗懋康). Chin. Phys. B, 2021, 30(6): 060502.
[7] Time-varying coupling-induced logical stochastic resonance in a periodically driven coupled bistable system
Yuangen Yao(姚元根). Chin. Phys. B, 2021, 30(6): 060503.
[8] Asymmetric stochastic resonance under non-Gaussian colored noise and time-delayed feedback
Ting-Ting Shi(石婷婷), Xue-Mei Xu(许雪梅), Ke-Hui Sun(孙克辉), Yi-Peng Ding(丁一鹏), Guo-Wei Huang(黄国伟). Chin. Phys. B, 2020, 29(5): 050501.
[9] Novel Woods-Saxon stochastic resonance system for weak signal detection
Yong-Hui Zhou(周永辉), Xue-Mei Xu(许雪梅), Lin-Zi Yin(尹林子), Yi-Peng Ding(丁一鹏), Jia-Feng Ding(丁家峰), Ke-Hui Sun(孙克辉). Chin. Phys. B, 2020, 29(4): 040503.
[10] Proof-of-principle experimental demonstration of quantum secure imaging based on quantum key distribution
Yi-Bo Zhao(赵义博), Wan-Li Zhang(张万里), Dong Wang(王东), Xiao-Tian Song(宋萧天), Liang-Jiang Zhou(周良将), Chi-Biao Ding(丁赤飚). Chin. Phys. B, 2019, 28(10): 104203.
[11] Stochastic resonance in an under-damped bistable system driven by harmonic mixing signal
Yan-Fei Jin(靳艳飞). Chin. Phys. B, 2018, 27(5): 050501.
[12] Stochastic resonance and synchronization behaviors of excitatory-inhibitory small-world network subjected to electromagnetic induction
Xiao-Han Zhang(张晓函), Shen-Quan Liu(刘深泉). Chin. Phys. B, 2018, 27(4): 040501.
[13] Implication of two-coupled tri-stable stochastic resonance in weak signal detection
Quan-Quan Li(李泉泉), Xue-Mei Xu(许雪梅), Lin-Zi Yin(尹林子), Yi-Peng Ding(丁一鹏), Jia-Feng Ding(丁家峰), Ke-Hui Sun(孙克辉). Chin. Phys. B, 2018, 27(3): 034203.
[14] Performance optimization for quantum key distribution in lossy channel using entangled photons
Yu Yang(杨玉), Luping Xu(许录平), Bo Yan(阎博), Hongyang Zhang(张洪阳), Yanghe Shen(申洋赫). Chin. Phys. B, 2017, 26(11): 110305.
[15] Analysis of weak signal detection based on tri-stable system under Levy noise
Li-Fang He(贺利芳), Ying-Ying Cui(崔莹莹), Tian-Qi Zhang(张天骐), Gang Zhang(张刚), Ying Song(宋莹). Chin. Phys. B, 2016, 25(6): 060501.
No Suggested Reading articles found!