Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(8): 087306    DOI: 10.1088/1674-1056/25/8/087306
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Temperature- and voltage-dependent trap generation model in high-k metal gate MOS device with percolation simulation

Hao Xu(徐昊), Hong Yang(杨红), Yan-Rong Wang(王艳蓉), Wen-Wu Wang(王文武), Wei-Chun Luo(罗维春), Lu-Wei Qi(祁路伟), Jun-Feng Li(李俊峰), Chao Zhao(赵超), Da-Peng Chen(陈大鹏), Tian-Chun Ye(叶甜春)
Key Laboratory of Microelectronics Devices & Integrated Technology, Institute of MicroElectronics, Chinese Academy of Sciences, Beijing 100029, China
Abstract  High-k metal gate stacks are being used to suppress the gate leakage due to tunneling for sub-45 nm technology nodes. The reliability of thin dielectric films becomes a limitation to device manufacturing, especially to the breakdown characteristic. In this work, a breakdown simulator based on a percolation model and the kinetic Monte Carlo method is set up, and the intrinsic relation between time to breakdown and trap generation rate R is studied by TDDB simulation. It is found that all degradation factors, such as trap generation rate time exponent m, Weibull slope β and percolation factor s, each could be expressed as a function of trap density time exponent α. Based on the percolation relation and power law lifetime projection, a temperature related trap generation model is proposed. The validity of this model is confirmed by comparing with experiment results. For other device and material conditions, the percolation relation provides a new way to study the relationship between trap generation and lifetime projection.
Keywords:  high-k metal gate      TDDB      percolation theory      kinetic Monte Carlo      trap generation model  
Received:  07 March 2016      Revised:  30 March 2016      Accepted manuscript online: 
PACS:  73.40.Qv (Metal-insulator-semiconductor structures (including semiconductor-to-insulator))  
  73.43.Cd (Theory and modeling)  
  77.22.Jp (Dielectric breakdown and space-charge effects)  
Fund: Project supported by the National High Technology Research and Development Program of China (Grant No. SS2015AA010601), the National Natural Science Foundation of China (Grant Nos. 61176091 and 61306129), and the Opening Project of Key Laboratory of Microelectronics Devices & Integrated Technology, Institute of MicroElectronics of Chinese Academy of Sciences.
Corresponding Authors:  Wen-Wu Wang     E-mail:  wangwenwu@ime.ac.cn

Cite this article: 

Hao Xu(徐昊), Hong Yang(杨红), Yan-Rong Wang(王艳蓉), Wen-Wu Wang(王文武), Wei-Chun Luo(罗维春), Lu-Wei Qi(祁路伟), Jun-Feng Li(李俊峰), Chao Zhao(赵超), Da-Peng Chen(陈大鹏), Tian-Chun Ye(叶甜春) Temperature- and voltage-dependent trap generation model in high-k metal gate MOS device with percolation simulation 2016 Chin. Phys. B 25 087306

[1] Auth C, Cappellani A, Chun J S, et al. 2008 Symposium on VLSI Technology, June 17-19, 2008, Honolulu, HI, pp. 128-129
[2] Packan P, Akbar S, Armstrong M, et al. 2009 IEEE International Electron Devices Meeting (IEDM), December 7-9, 2009, Baltimore, MD, pp. 1-4
[3] Auth C, Allen C, Blattner A, et al. 2012 Symposium on VLSI Technology (VLSIT), June 12-14, 2012, Honolulu, HI, pp. 131-132
[4] Prasad C, Agostinelli M, Auth C, et al. 2008 IEEE International Reliability Physics Symposium, IRPS, April 27-May 1, 2008, Phoenix, AZ, pp. 667-668
[5] Pae S, Ashok A, Choi J, Ghani T, He J, Lee S H, Lemay K, Liu M, Lu R, Packan P, Parker C, Purser R, St. Amour A and Woolery B 2010 IEEE International Reliability Physics Symposium (IRPS), May 2-6, Anaheim, CA, pp. 287-292
[6] Rahman A, Bai P, Curello G, Hicks J, Jan C H, Jamil M, Park J, Phoa K, Rahman M S and Tsai C Y 2013 IEEE International Reliability Physics Symposium (IRPS), April 14-18, 2013, Anaheim, CA, pp. PI.2.1-PI.2.6
[7] Suñné J, Placencia I, Barniol N, Farrés E, Martín F and Aymerich X 1990 Thin Solid Films 185 347
[8] Degraeve R, Groeseneken G, Bellens R, Ogier J L, Depas M, Roussel P J and Maes H E 1998 IEEE Trans. Electron Dev. 45 904
[9] Nigam T, Kerber A and Peumans P 2009 IEEE International Reliability Physics Symposium, April 26-30, 2009, Montreal, QC, pp. 523-530
[10] Wu E Y, Vayshenker A, Nowak E, Suñé J, Vollertsen R P, Lai W and Harmon D 2002 IEEE Trans. Electron Dev. 49 2244
[11] Kerber A and Cartier E A 2009 IEEE Trans. Device and Materials Reliability 9 147
[12] CHakravarthi S, Krishnan A T, Reddy V, Machala C F and Krishnan S 2004 IEEE International Reliability Physics Symposium (IRPS), April 25-29, 2004, pp. 273-282
[13] Degraeve R, Govoreanu B, Kaczer B, Van Houdt J and Groeseneken G 2005 IEEE International Reliability Physics Symposium (IRPS), April 17-21, 2005, pp. 360-365
[14] Suñé J 2001 IEEE Electron Dev. Lett. 22 296
[15] Krishnan A T and Nicollian P E 2007 IEEE International Reliability Physics Symposium (IRPS), April 15-19, 2007, pp. 232-239
[16] Pic D, Goguenheim D and Ogier J L 2006 Proc. 25th International Conference on Microelectronics (MIEL 2006), May 14-17, 2006, pp. 528-531
[17] Benoist A, Denorme S, Federspiel X, Allard B and Candelier P 2015 IEEE International Reliability Physics Symposium (IRPS), April 19-23, 2015, pp. GD.3.1-GD.3.5
[18] Wu E Y, McKenna J M, Lai W, Nowak E and Vayshenker A 2001 IEEE Electron Dev. Lett. 22 603
[1] Influence of helium on the evolution of irradiation-induced defects in tungsten: An object kinetic Monte Carlo simulation
Peng-Wei Hou(侯鹏伟), Yu-Hao Li(李宇浩), Zhong-Zhu Li(李中柱), Li-Fang Wang(王丽芳), Xingyu Gao(高兴誉), Hong-Bo Zhou(周洪波), Haifeng Song(宋海峰), and Guang-Hong Lu(吕广宏). Chin. Phys. B, 2021, 30(8): 086108.
[2] Study on influences of TiN capping layer on time-dependent dielectric breakdown characteristic of ultra-thin EOT high-k metal gate NMOSFET with kMC TDDB simulations
Hao Xu(徐昊), Hong Yang(杨红), Wei-Chun Luo(罗维春), Ye-Feng Xu(徐烨峰), Yan-Rong Wang(王艳蓉), Bo Tang(唐波), Wen-Wu Wang(王文武), Lu-Wei Qi(祁路伟), Jun-Feng Li(李俊峰), Jiang Yan(闫江), Hui-Long Zhu(朱慧珑), Chao Zhao(赵超), Da-Peng Chen(陈大鹏), Tian-Chun Ye(叶甜春). Chin. Phys. B, 2016, 25(8): 087305.
[3] Magnetization dynamics of mixed Co-Au chains on Cu(110) substrate: Combined ab initio and kinetic Monte Carlo study
K. M. Tsysar, S. V. Kolesnikov, A. M. Saletsky. Chin. Phys. B, 2015, 24(9): 097302.
[4] Kinetic Monte Carlo simulations of optimization of self-assembly quantum rings growth strategy based on substrate engineering
Liu Jian-Tao (刘建涛), Feng Hao (冯昊), Yu Zhong-Yuan (俞重远), Liu Yu-Min (刘玉敏), Shi Qiang (石强), Song Xin (宋鑫), Zhang Wen (张文), Peng Yi-Wei (彭益炜). Chin. Phys. B, 2013, 22(4): 046801.
[5] Broadening of Cr nanostructures in laser-focused atomic deposition
Lu Xiang-Dong(卢向东), Li Tong-Bao(李同保), and Ma Yan(马艳). Chin. Phys. B, 2010, 19(12): 123201.
[6] Simulation of multilayer Cu/Pd(100) heteroepitaxial growth by pulse laser deposition
Wu Feng-Min(吴锋民), Lu Hang-Jun(陆杭军), Fang Yun-Zhang(方允樟), and Huang Shi-Hua(黄仕华). Chin. Phys. B, 2007, 16(10): 3029-3035.
[7] Simulation of multilayer homoepitaxial growth on Cu (100) surface
Wu Feng-Min (吴锋民), Lu Hang-Jun (陆杭军), Wu Zi-Qin (吴自勤). Chin. Phys. B, 2006, 15(4): 807-812.
[8] Modelling of an obliquely deposited thin film in three dimensions by kinetic Monte Carlo method
Liu Zu-Li (刘祖黎), Zhang Xue-Feng (张雪锋), Yao Kai-Lun (姚凯伦), Wei He-Lin (魏合林), Huang Yun-Mi (黄运米). Chin. Phys. B, 2004, 13(12): 2115-2120.
[9] NOVEL FORMATION AND DECAY MECHANISMS OF NANOSTRUCTURES ON THE SURFACE
Wand En-ge (王恩哥), Liu Bang-gui (刘邦贵), Wu Jing (吴静), Li Mao-zhi (李茂枝), Yao Yu-gui (姚裕贵), Zhu Wen-guang (朱文光), Zhong Jian-xin (钟建新), John Wendelken, Niu Qian (朱谦), Zhang Zhen-yu (张振宇). Chin. Phys. B, 2001, 10(13): 144-150.
No Suggested Reading articles found!