Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(10): 108201    DOI: 10.1088/1674-1056/24/10/108201
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Ion and water transport in charge-modified graphene nanopores

Qiu Ying-Hua (裘英华), Li Kun (李堃), Chen Wei-Yu (陈伟宇), Si Wei (司伟), Tan Qi-Yan (谭启檐), Chen Yun-Fei (陈云飞)
School of Mechanical Engineering and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing 211189, China
Abstract  Porous graphene has a high mechanical strength and an atomic-layer thickness that makes it a promising material for material separation and biomolecule sensing. Electrostatic interactions between charges in aqueous solutions are a type of strong long-range interaction that may greatly influence fluid transport through nanopores. In this study, molecular dynamic simulations were conducted to investigate ion and water transport through 1.05-nm diameter monolayer graphene nanopores, with their edges charge-modified. Our results indicated that these nanopores are selective to counterions when they are charged. As the charge amount increases, the total ionic currents show an increase-decrease profile while the co-ion currents monotonically decrease. The co-ion rejection can reach 76.5% and 90.2% when the nanopores are negatively and positively charged, respectively. The Cl- ion current increases and reaches a plateau, and the Na+ current decreases as the charge amount increases in systems in which Na+ ions act as counterions. In addition, charge modification can enhance water transport through nanopores. This is mainly due to the ion selectivity of the nanopores. Notably, positive charges on the pore edges facilitate water transport much more strongly than negative charges.
Keywords:  monolayer porous graphene      charge-modified nanopore      ion selectivity      ionic current      water transport  
Received:  22 January 2015      Revised:  06 April 2015      Accepted manuscript online: 
PACS:  82.20.Wt (Computational modeling; simulation)  
  89.40.Cc (Water transportation)  
  92.05.Hj (Physical and chemical properties of seawater)  
  68.65.Pq (Graphene films)  
Fund: Project supported by the National Basic Research Program of China (Grant Nos. 2011CB707601 and 2011CB707605), the National Natural Science Foundation of China (Grant No. 50925519), the Fundamental Research Funds for the Central Universities, Funding of Jiangsu Provincial Innovation Program for Graduate Education, China (Grant No. CXZZ13_0087), and the Scientific Research Foundation of Graduate School of Southeast University (Grant No. YBJJ 1322).
Corresponding Authors:  Chen Yun-Fei     E-mail:  yunfeichen@seu.edu.cn

Cite this article: 

Qiu Ying-Hua (裘英华), Li Kun (李堃), Chen Wei-Yu (陈伟宇), Si Wei (司伟), Tan Qi-Yan (谭启檐), Chen Yun-Fei (陈云飞) Ion and water transport in charge-modified graphene nanopores 2015 Chin. Phys. B 24 108201

[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
[2] Balandin A A, Ghosh S, Bao W Z, Calizo I, Teweldebrhan D, Miao F and Lau C N 2008 Nano Lett. 8 902
[3] Castro Neto A H, Guinea F, Peres N M R, Novoselov K S and Geim A K 2009 Rev. Mod. Phys. 81 109
[4] Zhou M, Lin T Q, Huang F Q, Zhong Y J, Wang Z, Tang Y F, Bi H, Wan D Y and Lin J H 2013 Adv. Funct. Mater. 23 2263
[5] Stoller M D, Park S, Zhu Y W, An J and Ruoff R S 2008 Nano Lett. 8 3498
[6] Yang S B, Feng X L, Ivanovici S and Müllen K 2010 Angew. Chem. Int. Ed. 49 8408
[7] Zhao J, Zhang G Y and Shi D X 2013 Chin. Phys. B 22 057701
[8] Garaj S, Hubbard W, Reina A, Kong J, Branton D and Golovchenko J A 2010 Nature 467 190
[9] Koenig S P, Wang L D, Pellegrino J and Bunch J S 2012 Nat. Nanotech. 7 728
[10] Stampfer C, Güttinger J, Molitor F, Graf D, Ihn T and Ensslin K 2008 Appl. Phys. Lett. 92 012102
[11] Celebi K, Buchheim J, Wyss R M, Droudian A, Gasser P, Shorubalko I, Kye J I, Lee C and Park H G 2014 Science 344 289
[12] Merchant C A, Healy K, Wanunu M, Ray V, Peterman N, Bartel J, Fischbein M D, Venta K, Luo Z T, Johnson A T C and Drndić M 2010 Nano Lett. 10 2915
[13] Zwolak M and Di Ventra M 2008 Rev. Mod. Phys. 80 141
[14] Chen D, Zhang H, Liu Y and Li J H 2013 Energy Environ. Sci. 6 1362
[15] Nair R R, Wu H A, Jayaram P N, Grigorieva I V and Geim A K 2012 Science 335 442
[16] Joshi R K, Carbone P, Wang F C, Kravets V G, Su Y, Grigorieva I V, Wu H A, Geim A K and Nair R R 2014 Science 343 752
[17] Bayley H 2010 Nature 467 164
[18] Mishra A K and Ramaprabhu S 2011 Desalination 282 39
[19] Cohen-Tanugi D and Grossman J C 2012 Nano Lett. 12 3602
[20] Zhao S J, Xue J M and Kang W 2013 J. Chem. Phys. 139 114702
[21] Sint K, Wang B Y and Král P 2008 J. Am. Chem. Soc. 130 16448
[22] Konatham D, Yu J, Ho T A and Striolo A 2013 Langmuir 29 11884
[23] Israelachvili J N 2011 Intermolecular and surface forces, 3rd edn. (London: Elsevier) p. 60
[24] Humphrey W, Dalke A and Schulten K 1996 J. Mol. Graphics 14 33
[25] Jorgensen W L, Chandrasekhar J, Madura J D, Impey R W and Klein M L 1983 J. Chem. Phys. 79 926
[26] Miyamoto S, Kollman P A 1992 J. Comput. Chem. 13 952
[27] Yeh I C and Berkowitz M L 1999 J. Chem. Phys. 111 3155
[28] Berendsen H J C, Grigera J R and Straatsma T P 1987 J. Phys. Chem. 91 6269
[29] Lide D R 2004 Crc handbook of chemistry and physics, 85th edn. (London: CRC Press) pp. 5-93
[30] Tansel B, Sager J, Rector T, Garland J, Strayer R F, Levine L F, Roberts M, Hummerick M and Bauer J 2006 Sep. Purif. Technol. 51 40
[31] Tu Y S, Lv M, Xiu P, Huynh T, Zhang M, Castelli M, Liu Z R, Huang Q, Fan C H, Fang H P and Zhou R H 2013 Nat. Nanotech. 8 594
[32] Titov A V, Král P and Pearson R 2009 ACS Nano 4 229
[33] Hu W B, Peng C, Lv M, Li X M, Zhang Y J, Chen N, Fan C H and Huang Q 2011 ACS Nano 5 3693
[1] Site occupation of doping La3+ cations and phase transition in Na0.5Bi0.5TiO3–BaTiO3 solid solution
Liu Li-Ying (刘立英), Wang Ru-Zhi (王如志), Zhu Man-Kang (朱满康), Hou Yu-Dong (侯育冬). Chin. Phys. B, 2013, 22(3): 036401.
No Suggested Reading articles found!